
EPICS
Input / Output Controller (IOC)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
June 1998
EPICS Release 3.13.0beta12
/**

 NOTICE

This material resulted from work developed under a U.S. Government contract and is subject
to the following license: the Government is granted for iteslf and the public a paid-up,
nonexclusive, irrevocable worldwide license in this material to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly.

**

 DISCLAIMER

**

NEITHER THE UNITED STATES GOVERNMENT NOR ANY AGENCY THEREOF, NOR

ANY OF THEIR EMPLOYESS OR OFFICERS MAKES ANY WARRANTY, EXPRESS OR

IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION,
APPARATUS, PRODUCT, OR PROCESS DESCLOSED, OR REPRESENTS THAT ITS
USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS

EPICS Release: R3.13.0.beta12 EPICS IOC Application Developer’s Guide 1

2 EPICS IOC Application Developer’s Guide

 Preface . 1
. Overview .1
. Acknowledgments .2

Chapter 1: EPICS Overview. 5
. What is EPICS? .5
. Basic Attributes .6
. Hardware - Software Platforms (Vendor Supplied)6
. IOC Software Components. .7
. Channel Access .9
. OPI Tools .10
. EPICS Core Software .11
. Getting Started .12

Chapter 2: Database Locking, Scanning, And Processing. 13
. Overview .13
. Record Links .13
. Database Links .14
. Database Locking .15
. Database Scanning .15
. Record Processing .16
. Guidelines for Creating Database Links. .16
. Guidelines for Synchronous Records .19
. Guidelines for Asynchronous Records. .20
. Cached Puts .21
. Channel Access Links .22

Chapter 3: Database Definition . 25
. Overview .25
. Definitions .25
. Breakpoint Tables. .38
. Menu and Record Type Include File Generation. 39
. Utility Programs .42

Chapter 4: IOC Initialization . 47
. Overview .47
. iocInit .48
. Changing iocCore fixed limits .49
. TSconfigure .49
. initHooks .50
. Environment Variables. .51
. Initialize Logging .51
. Get Resource Definitions .52

Chapter 5: Access Security . 53
. Overview .53
. Quick Start .53
. User’s Guide. .54
. Design Summary .59
. Access Security Application Programmer’s Interface61
. Database Access Security. .65
. Channel Access Security .67
. Access Control: Implementation Overview .68
. Structures .70
EPICS Release: R3.13.0.beta12
EPICS IOC Application Developer’s Guide 1

Chapter 6: IOC Test Facilities . 71
. Overview . 71
. Database List, Get, Put . 71
. Breakpoints . 73
. Error Logging . 74
. Hardware Reports . 74
. Scan Reports . 75
. Time Server Report . 75
. Access Security Commands . 76
. Channel Access Reports . 77
. Interrupt Vectors . 78
. EPICS . 78
. Database System Test Routines. 78
. Record Link Routines . 79
. Old Database Access Testing . 80
. Routines to dump database information . 80

Chapter 7: IOC Error Logging . 83
. Overview . 83
. Error Message Routines. 84
. errlog Task . 85
. Status Codes. 86
. iocLog . 87

Chapter 8: Record Support. 89
. Overview . 89
. Overview of Record Processing . 89
. Record Support and Device Support Entry Tables 90
. Example Record Support Module . 91
. Record Support Routines. 97
. Global Record Support Routines . 100

Chapter 9: Device Support . 103
. Overview . 103
. Example Synchronous Device Support Module 104
. Example Asynchronous Device Support Module 105
. Device Support Routines . 107

Chapter 10: Driver Support . 109
. Overview . 109
. Device Drivers . 109

Chapter 11: Static Database Access . 113
. Overview . 113
. Definitions . 113
. Allocating and Freeing DBBASE . 114
. DBENTRY Routines . 115
. Read and Write Database. 116
. Manipulating Record Types . 117
. Manipulating Field Descriptions . 118
. Manipulating Record Attributes . 118
. Manipulating Record Instances . 119
. Manipulating Menu Fields. 120
. Manipulating Link Fields . 121
2 EPICS IOC Application Developer’s Guide

. Manipulating MenuForm Fields. .122

. Find Breakpoint Table .123

. Dump Routines. .123

. Examples .124

Chapter 12: Runtime Database Access . 127
. Overview .127
. Database Include Files .127
. Runtime Database Access Overview .129
. Database Access Routines .132
. Runtime Link Modification .139
. Channel Access Monitors. .139
. Lock Set Routines. .140
. Channel Access Database Links. .141

Chapter 13: Device Support Library . 145
. Overview .145
. Registering VME Addresses .145
. Interrupt Connect Routines. .146
. Macros and Routines for Normalized Analog Values146

Chapter 14: EPICS General Purpose Tasks 149
. Overview .149
. General Purpose Callback Tasks .149
. Task Watchdog. .152

Chapter 15: Database Scanning . 155
. Overview .155
. Scan Related Database Fields. .155
. Software Components That Interact With The Scanning System 156
. Implementation Overview .159

Chapter 16: Database Structures . 163
. Overview .163
. Include Files .163
. Structures .164

 INDEX . 167
EPICS Release: R3.13.0.beta12
EPICS IOC Application Developer’s Guide 3

4 EPICS IOC Application Developer’s Guide

Preface
 Overview

This document describes the core software that resides in an Input/Output Controller (IOC),
one of the major components of EPICS. It is intended for anyone developing EPICS IOC
databases and/or new record/device/driver support.

The plan of the book is:

EPICS Overview An overview of EPICS is presented, showing how the IOC software fits
into EPICS. This is the only chapter that discusses OPI software and
Channel Access rather than just IOC related topics.

Database Locking, Scanning, and Processing
Overview of three closely related IOC concepts. These concepts are at
the heart of what constitutes an EPICS IOC.

Database Definition This chapter gives a complete description of the format of the files that
describe IOC databases. This is the format used by Database
Configuration Tools and is also the format used to load databases into an
IOC.

IOC Initialization A great deal happens at IOC initialization. This chapter removes some
of the mystery about initialization.

Access Security Channel Access Security is implemented in IOCs. This chapter explains
how it is configured and also how it is implemented.

IOC Test Facilities Epics supplied test routines that can be executed via the vxWorks shell.

IOC Error Logging IOC code can call routines that send messages to a system wide error
logger.

Record Support The concept of record support is discussed. This information is
necessary for anyone who wishes to provide customized record and
device support.

Device Support The concept of device support is discussed. Device support takes care of
the hardware specific details of record support, i.e. it is the interface
between hardware and a record support module. Device support can
directly access hardware or may interface to driver support.

Driver Support The concepts of driver support is discussed. Drivers, which are not
always needed, have no knowledge of records but just take care of
interacting with hardware. Guidelines are given about when driver
support, instead of just device support, should be provided.

Static Database Access
This is a library that works on Unix and vxWorks and on initialized or
uninitialized EPICS databases.

Runtime Database Access
The heart of the IOC software is the memory resident database. This
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 1

 Preface
Acknowledgments
chapter describes the interface to this database.

Device Support Library
A set of routines are provided for device support modules that use
shared resources such as VME address space.

EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.

Database Scanning Database scan tasks, i.e. the tasks that request records to process.

Database Structures A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it does not
describe other EPICS tools which run in an IOC such as the sequencer. It also does not
describe Channel Access which is, of course, one of the major IOC components.

The reader of this manual should also have the following documents:

• EPICS Record Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

• EPICS IOC Applications: Building and Source Release Control ,Marty Kraimer and
Janet Anderson,
See ANL Web site for latest version.

• vxWorks Programmer’s Guide, Wind River Systems

• vxWorks Reference Manual, Wind River Systems

 Acknowledgments

The basic model of what an IOC should do and how to do it was developed by Bob Dalesio at
LANL/GTA. The principle ideas for Channel Access were developed by Jeff Hill of LANL/
GTA. Bob and Jeff also were the principle implementers of the original IOC software. They
developed this software (called GTACS) over a period of several years with feedback from
LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the
major goal being to provide easily extendible record and device support. Marty Kraimer (ANL/
APS) was primarily responsible for designing the data structures needed to support extendible
record and device support and for making the changes needed to the IOC resident software.
Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules
necessary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to
the Database Configuration Tool (DCT) necessary to support the new facilities. Janet Anderson
developed methods to systematically test various features of the IOC software and is the
principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of
fast database links and the database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed
the ASCII database instance format now used as the standard format. At that time he also
created dbLoadRecords and dbLoadTemplate.

The build utility method resulted in the generation of binary files of UNIX that were loaded
into IOCs. As new IOC architectures started being supported this caused problems. During
1995, after learning from an abandoned effort now referred to as EpicsRX, the build utilities
2 EPICS IOC Application Developer’s Guide

 Preface
Acknowledgments
and binary file (called default.dctsdr) were replaced by all ASCII files. The new method
provides architecture independence and a more flexible environment for configuring the
record/device/driver support. This principle implementer was Marty Kraimer with many ideas
contributed by John Winans and Jeff Hill. Bob Dalesio made sure that we did not go to far, i.e.
1) make it difficult to upgrade existing applications and 2) lose performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This
turned into a cooperative development effort between Bob and Marty Kraimer. The effort
included new code for database to Channel Access links, a new library for lock sets, and a
cleaner interface for accessing database links.

Many other people have been involved with EPICS development, including new record,
device, and driver support modules.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 3

 Preface
Acknowledgments
4 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
 What is EPICS?

EPICS consists of a set of software components and tools that Application Developers use to
create a control system. The basic components are:

• OPI: Operator Interface. This is a UNIX based workstation which can run various
EPICS tools.

• IOC: Input/Output Controller. This is a VME/VXI based chassis containing a processor,
various I/O modules and VME modules that provide access to other I/O buses such as
GPIB.

• LAN: Local Area Network. This is the communication network which allows the IOCs
and OPIs to communicate. EPICS provides a software component, Channel Access,
which provides network transparent communication between a Channel Access client
and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

The rest of this chapter gives a brief description of EPICS:

• Basic Attributes: A few basic attributes of EPICS.

• Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

• IOC Software: EPICS supplied IOC software components.

• Channel Access: EPICS software that supports network independent access to IOC
databases.

• OPI Tools: EPICS supplied OPI based tools.

• EPICS Core: A list of the EPICS core software, i.e. the software components without
which EPICS will not work.

IOC

LAN

IOC

OPI OPI OPI.

.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 5

Chapter 1: EPICS Overview
Basic Attributes
 Basic Attributes

The basic attributes of EPICS are:

• Tool Based: EPICS provides a number of tools for creating a control system. This
minimizes the need for custom coding and helps ensure uniform operator interfaces.

• Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the
network is not saturated, no single bottle neck is present. A distributed system scales
nicely. If a single IOC becomes saturated, its functions can be spread over several IOCs.
Rather than running all applications on a single host, the applications can be spread over
many OPIs.

• Event Driven: The EPICS software components are all designed to be event driven to
the maximum extent possible. For example, rather than having to poll IOCs for changes,
a Channel Access client can request that it be notified when a change occurs. This
design leads to efficient use of resources, as well as, quick response times.

• High Performance: A SPARC based workstation can handle several thousand screen
updates a second with each update resulting from a Channel Access event. A 68040 IOC
can process more than 6,000 records per second, including generation of Channel
Access events.

 Hardware - Software Platforms (Vendor Supplied)

OPI Hardware

• Unix based Workstations: Well supported platforms include SUNOS, SOLARIS, and
HP-UX

• Other UNIX platforms have some support, including LINUX

• Limited support is provided for Windows NT and for VMS

Software

• UNIX

• X Windows

• Motif Toolkit

LAN Hardware

• Ethernet and FDDI

• ATM in the future

Software

• TCP/IP protocols via sockets

IOC Hardware

• VME/VXI bus and crates

• Motorola 68020, 68030, 68040, 68060

• Some support for other processors: Intel, Mips, PowerPC, Sparc, etc.
6 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
IOC Software Components
• Various VME modules (ADCs, DAC, Binary I/O, etc.)

• Allen Bradley Scanner (Most AB I/O modules)

• GPIB devices

• BITBUS devices

• CAMAC

• CANBUS

Software

• vxWorks operating system

• Real time kernel

• Extensive “Unix like” libraries

 IOC Software Components

An IOC contains the following EPICS supplied software components.

• IOC Database: The memory resident database plus associated data structures.

• Database Access: Database access routines. With the exception of record and device
support, all access to the database is via the database access routines.

• Scanners: The mechanism for deciding when records should be processed.

• Record Support: Each record type has an associated set of record support routines.

• Device Support: Each record type can have one or more sets of device support routines.

• Device Drivers: Device drivers access external devices. A driver may have an
associated driver interrupt routine.

Ethernet

Channel
Access

Sequencer

Scanners

Monitors
Database
Access IOC Database

Driver or
Device

Interrupt
Routines

Record Support

Device Support

Device
Drivers

VME
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 7

Chapter 1: EPICS Overview
IOC Software Components
• Channel Access: The interface between the external world and the IOC. It provides a
network independent interface to database access.

• Monitors: Database monitors are invoked when database field values change.

• Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

IOC Database The heart of each IOC is a memory resident database together with various memory resident
structures describing the contents of the database. EPICS supports a large and extensible set of
record types, e.g. ai (Analog Input), ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and
others are specific to particular record types. Every record has a record name and every field
has a field name. The first field of every database record holds the record name, which must be
unique across all IOCs that are attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficiently. Most
software components, because they access the database via database access routines, do not
need to be aware of these structures.

Database Access With the exception of record and device support, all access to the database is via the channel or
database access routines. See Chapter 12, “Runtime Database Access” on page 127 for details.

Database Scanning Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible: Periodic, Event, I/O Event, Passive and Scan Once.

• Periodic: A request can be made to process a record periodically. A number of time
intervals are supported.

• Event: Event scanning is based on the posting of an event by any IOC software
component. The actual subroutine call is:
post_event(event_num)

• I/O Event: The I/O event scanning system processes records based on external
interrupts. An IOC device driver interrupt routine must be available to accept the
external interrupts.

• Passive: Passive records are processed as a result of linked records being processed or
as a result of external changes such as Channel Access puts.

• Scan Once: In order to provide for caching puts, The scanning system provides a
routine scanOnce which arranges for a record to be processed one time.

Record Support,
Device Support and
Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its
associated record support module. Therefore, database access can support any number and
type of records. Similarly, record support contains no device specific knowledge, giving each
record type the ability to have any number of independent device support modules. If the
method of accessing the piece of hardware is more complicated than what can be handled by
device support, then a device driver can be developed.

Record types not associated with hardware do not have device support or device drivers.

The IOC software is designed so that the database access layer knows nothing about the record
support layer other than how to call it. The record support layer in turn knows nothing about its
device support layer other than how to call it. Similarly the only thing a device support layer
knows about its associated driver is how to call it. This design allows a particular installation
and even a particular IOC within an installation to choose a unique set of record types, device
types, and drivers. The remainder of the IOC system software is unaffected.
8 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
Channel Access
Because an Application Developer can develop record support, device support, and device
drivers, these topics are discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the
database scanners. Record processing consists of some combination of the following functions
(particular records types may not need all functions):

• Input: Read inputs. Inputs can be obtained, via device support routines, from hardware,
from other database records via database links, or from other IOCs via Channel Access
links.

• Conversion: Conversion of raw input to engineering units or engineering units to raw
output values.

• Output: Write outputs. Output can be directed, via device support routines, to
hardware, to other database records via database links, or to other IOCs via Channel
Access links.

• Raise Alarms: Check for and raise alarms.

• Monitor: Trigger monitors related to Channel Access callbacks.

• Link: Trigger processing of linked records.

Channel Access Channel Access is discussed in the next section.

Database Monitors Database monitors provide a callback mechanism for database value changes. This allows the
caller to be notified when database values change without constantly polling the database. A
mask can be set to specify value changes, alarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use
the database monitors. The monitor routines will not be described because they are of interest
only to Channel Access.

 Channel Access

Channel Access provides network transparent access to IOC databases. It is based on a client/
server model. Each IOC provides a Channel Access server which is willing to establish
communication with an arbitrary number of clients. Channel Access client services are
available on both OPIs and IOCs. A client can communicate with an arbitrary number of
servers.

Client Services The basic Channel Access client services are:

• Search: Locate the IOCs containing selected process variables and establish
communication with each one.

• Get: Get value plus additional optional information for a selected set of process
variables.

• Put: Change the values of selected process variables.

• Add Event: Add a change of state callback. This is a request to have the server send
information only when the associated process variable changes state. Any combination
of the following state changes can be requested: change of value, change of alarm status
and/or severity, and change of archival value. Many record types provide hysteresis
factors for value changes.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 9

Chapter 1: EPICS Overview
OPI Tools
In addition to requesting process variable values, any combination of the following additional
information may be requested:

• Status: Alarm status and severity.

• Units: Engineering units for this process variable.

• Precision: Precision with which to display floating point numbers.

• Time: Time when the record was last processed.

• Enumerated: A set of ASCII strings defining the meaning of enumerated values.

• Graphics: High and low limits for producing graphs.

• Control: High and low control limits.

• Alarm: The alarm HIHI, HIGH, LOW, and LOLO values for the process variable.

It should be noted that Channel Access does not provide access to database records as records.
This is a deliberate design decision. This allows new record types to be added without
impacting any software that accesses the database via Channel Access, and it allows a Channel
Access client to communicate with multiple IOCs having differing sets of record types.

Search Server Channel Access provides an IOC resident server which waits for Channel Access search
messages. These are generated when a Channel Access client (for example when an Operator
Interface task starts) searches for the IOCs containing process variables the client uses. This
server accepts all search messages, checks to see if any of the process variables are located in
this IOC, and, if any are found, replies to the sender with and “I have it” message.

Connection Request
Server

Once the process variables have been located, the Channel Access client issues connection
requests for each IOC containing process variables the client uses. The connection request
server, in the IOC, accepts the request and establishes a connection to the client. Each
connection is managed by two separate tasks: ca_get and ca_put. The ca_get and
ca_put requests map to dbGetField and dbPutField database access requests.
ca_add_event requests result in database monitors being established. Database access and/
or record support routines trigger the monitors via a call to db_post_event.

Connection
Management

Each IOC provides a connection management service. When a Channel Access server fails
(e.g. its IOC crashes) the client is notified and when a client fails (e.g. its task crashes) the
server is notified. When a client fails, the server breaks the connection. When a server crashes,
the client automatically re-establishes communication when the server restarts.

 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on
whether or not they use Channel Access. Channel Access tools are real time tools, i.e. they are
used to monitor and control IOCs.

Channel Access
Tools

A large number of Channel Access tools have been developed. The following are some
representative examples.

• MEDM: Motif version of combined display manager and display editor.

• DM: Display Manager. Reads one or more display list files created by EDD, establishes
communication with all necessary IOCs, establishes monitors on process variables,
accepts operator control requests, and updates the display to reflect all changes.
10 EPICS IOC Application Developer’s Guide

Chapter 1: EPICS Overview
EPICS Core Software
• ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration
file.

• AR: Archiver. General purpose tool to acquire and save data from IOCs.

• Sequencer: Runs in an IOC and emulates a finite state machine.

• BURT: Backup and Restore Tool. General purpose tool to save and restore Channel
Access channels. The tool can be run via Unix commands or via a Graphical User
Interface.

• KM: Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

• PROBE: Allows the user to monitor and/or change a single process variable specified at
run time.

• CAMATH: Channel Access interface for Mathematica.

• CAWINGZ: Channel Access interface for Wingz.

• IDL/PVWAVE Channel Access Interfaces exist for these products.

• TCL/TK Channel Access Interface for these products.

• CDEV - A library designed to provide a standard API to one or more underlying
packages, typically control system interfaces. CDEV provides a Channel Access
service.

Other OPI Tools • GDCT: Graphical Database Configuration Tool. Used to create a run time database for
an IOC.

• EDD: Display Editor. This tool is used to create a display list file for the Display
Manager. A display list file contains a list of static, monitor, and control elements. Each
monitor and control element has an associated process variable.

• SNC: State Notation Compiler. It generates a C program that represents the states for
the IOC Sequencer tool.

• ASCII Tools - Tools are provided which generate C include files from menu and record
type ASCII definition files.

• Source/Release: EPICS provides a Source/Release mechanism for managing EPICS.

 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software,
i.e. the components of EPICS without which EPICS would not function, are:

• Channel Access - Client and Server software

• IOC Database

• Scanners

• Monitors

• ASCII tools

• Source/Release

All other software components are optional. Of course, any application developer would be
crazy to ignore tools such as MEDM (or EDD/DM). Likewise an application developer would
not start from scratch developing record and device support. Most OPI tools do not, however,
have to be used. Likewise any given record support module, device support module, or driver
could be deleted from a particular IOC and EPICS will still function.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 11

Chapter 1: EPICS Overview
Getting Started
 Getting Started

The Document “EPICS IOC Applications: Building and Source Release Control” available via
the WWW at www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/
iocAppBuildSRcontrol.html gives instructions for building IOC applications. In particular
follow the instructions in the section “Quick Start”.
12 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And
Processing
 Overview

Before describing particular components of the IOC software, it is helpful to give an overview
of three closely related topics: Database locking, scanning, and processing. Locking is done to
prevent two different tasks from simultaneously modifying related database records. Database
scanning is the mechanism for deciding when records should be processed. The basics of
record processing involves obtaining the current value of input fields and outputting the
current value of output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This
feature also causes considerable complication. Thus, before discussing locking, scanning, and
processing, record links are described.

 Record Links

A database record may contain links to other records. Each link is one of the following types:

• INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:

• constant link
Not discussed in this chapter

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC. It is accessed via a special IOC client task. It is
also possible to force a link to be a channel access link even it references a record
in the same IOC.

• hardware link
Not discussed in this chapter

• FWDLINK
A forward link refers to a record that should be processed whenever the record
containing the forward link is processed. The following types are supported:

• constant link
Ignored.

• database link
A link to another record in the same IOC.

• channel access link
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 13

Chapter 2: Database Locking, Scanning, And Processing
Database Links
A link to a record in another IOC or a link forced to be a channel access link.
Unless the link references the PROC field it is ignored. If it does reference the
PROC field a channel access put with a value of 1 is issued.

Links are defined in file link.h.

NOTE: This chapter discusses mainly database links.

 Database Links

Database links are referenced by calling one of the following routines:

• dbGetLink: The value of the field referenced by the input link retrieved.

• dbPutLink: The value of the field referenced by the output link is changed.

• dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed
when the record containing the link is processed. For input and output links, however, two
other attributes can be specified by the application developer, process passive and maximize
severity.

Process Passive Process passive (PP or NPP), is either TRUE or FALSE. It determines if the linked record
should be processed before getting a value from an input link or after writing a value to an
output link. The linked record will be processed, via a call to dbProcess, only if the record is
a passive record and process passive is TRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the
link to be handled like a Channel Access Link. See last section of this chapter for details.

Maximize Severity Maximize severity (MS or NMS), is TRUE or FALSE. It determines if alarm severity is
propagated across links. For input links the alarm severity of the record referred to by the link
is propagated to the record containing the link. For output links the alarm severity of the record
containing the link is propagated to the record referred to by the link. In either case, if the
severity is changed, the alarm status is set to LINK_ALARM.

The method of determining if the alarm status and severity should be changed is called
”maximize severity”. In addition to its actual status and severity, each record also has a new
status and severity. The new status and severity are initially 0, which means NO_ALARM. Every
time a software component wants to modify the status and severity, it first checks the new
severity and only makes a change if the severity it wants to set is greater than the current new
severity. If it does make a change, it changes the new status and new severity, not the current
status and severity. When database monitors are checked, which is normally done by a record
processing routine, the current status and severity are set equal to the new values and the new
values reset to zero. The end result is that the current alarm status and severity reflect the
highest severity outstanding alarm. If multiple alarms of the same severity are present the
status reflects the first one detected.
14 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Database Locking
 Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously by
two different tasks. In addition, it prevents ”outside” tasks from changing any field while the
record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
dbScanUnlock(precord);

The basic idea is to call dbScanLock before accessing database records and calling
dbScanUnlock afterwords. Because of database links (Input, Output, and Forward) a
modification to one record can cause modification to other records. Records linked together are
placed in the same lock set. dbScanLock locks the entire lock set not just the record
requested. dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a
record and unlock afterwards.

All records linked via OUTLINKs and FWDLINKs are placed in the same lock set. Records
linked via INLINKs with process_passive or maximize_severity TRUE are also
forced to be in the same lock set.

 Database Scanning

Database scanning refers to requests that database records be processed. Four types of
scanning are possible:

5. Periodic - Records are scanned at regular intervals.

6. I/O event - A record is scanned as the result of an I/O interrupt.

7. Event - A record is scanned as the result of any task issuing a post_event request.

8. Passive - A record is scanned as a result of a call to dbScanPassive.
dbScanPassive will issue a record processing request if and only if the record is
passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

• dbScanPassive: Only record processing routines, dbGetLink, dbPutLink, and
dbPutField call dbScanPassive. Record processing routines call it for each
forward link in the record.

• dbPutField: This routine changes the specified field and then, if the field has been
declared process_passive, calls dbScanPassive. Each field of each record type
has the attribute process_passive declared TRUE or FALSE in the definition file.
This attribute is a global property, i.e. the application developer has no control of it. This
use of process_passive is used only by dbPutField. If dbPutField finds the
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 15

Chapter 2: Database Locking, Scanning, And Processing
Record Processing
record already active (this can happen to asynchronous records) and it is supposed to
cause it to process, it arranges for it to be processed again, when the current processing
completes.

• dbGetLink: If the link specifies process passive, this routine calls dbScanPassive.
Whether or not dbScanPassive is called, it then obtains the specified value.

• dbPutLink: This routine changes the specified field. Then, if the link specifies process
passive, it calls dbScanPassive. dbPutLink is only called from record processing
routines. Note that this usage of process_passive is under the control of the
application developer. If dbPutLink finds the record already active because of a
dbPutField directed to this record then it arranges for the record to be processed
again, when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call
dbGetField to obtain database values. dbGetField just reads values without asking that a
record be processed.

 Record Processing

A record is processed as a result of a call to dbProcess. Each record support module must
supply a routine process. This routine does most of the work related to record processing.
Since the details of record processing are record type specific this topic is discussed in greater
detail in Chapter "Record Support" for details.

 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In
order to use links properly it is important that the Application Developer understand how they
are processed. As an introduction consider the following example :

Assume that A, B, and C are all passive records. The notation states that A has a forward link
to B and B to C. C has an input link obtaining a value from A. Assume, for some reason, A gets
processed. The following sequence of events occurs:

9. A begins processing. While processing a request is made to process B.

10. B starts processing. While processing a request is made to process C.

11. C starts processing. One of the first steps is to get a value from A via the input link.

12. At this point a question occurs. Note that the input link specifies process passive
(signified by the PP after InLink). But process passive states that A should be

InLink PP

A FwdLink B FwdLink C
16 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links
processed before the value is retrieved. Are we in an infinite loop? The answer is no.
Every record contains a field pact (processing active), which is set TRUE when record
processing begins and is not set FALSE until all processing completes. When C is
processed A still has pact TRUE and will not be processed again.

13. C obtains the value from A and completes its processing. Control returns to B.

14. B completes returning control to A

15. A completes processing.

This brief example demonstrates that database links needs more discussion.

Rules Relating to
Database Links

Processing Order The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example
the following records are processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

2. If a record has multiple input links (calculation and select records) the input is obtained
in the natural order. For example if the fields are named INPA, INPB, ..., INPL, then the
links are read in the order A then B then C, etc. Thus if obtaining an input results in a
record being processed, the processing order is guaranteed.

3. All input and output links are processed before the forward link.

Lock Sets All records, except for the conditions listed in the next paragraph, linked together directly or
indirectly are placed in the same lock set. When dbScanLock is called the entire set, not just
the specified record, is locked. This prevents two different tasks from simultaneously
modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions are
true.

• The link is an INLINK (It is an input link)

• The link is NPP (It is no process passive)

• The link is NMS (It is no maximize severity)

• The number of elements is <-1 (The link references a scalar field)

PACT - processing
active

Each record contains a field pact. This field is set TRUE at the beginning of record processing
and is not set FALSE until the record is completely processed. In particular no links are
processed with pact FALSE. This prevents infinite processing loops. The example given at
the beginning of this section gives an example. It will be seen in the next two sections that
pact has other uses.

FLNK1 FLNK2

FLNK3 FLNK4

fanout
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 17

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links
Process Passive: Link
option

Input and output links have an option called process passive. For each such link the application
developer can specify process passive TRUE (PP) or process passive FALSE (NPP). Consider
the following example

Assume that all records except fanout are passive. When the fanout record is processed the
following sequence of events occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It calls dbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

4. A is processed, the data value fetched, and control is returned to B

5. B completes processing and control is returned to fanout. Fanout asks that C be
processed.

6. C begins processing. It calls dbGetLink to obtain data from A.

7. Because the input link has process passive TRUE, a request is made to process A.

8. A is processed, the data value fetched, and control is returned to C.

9. C completes processing and returns to fanout

10. The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no
process passive then A will only be processed once. Thus we should have .

Process Passive: Field
attribute

Each field of each database record type has an attribute called process_passive. This
attribute is specified in the record definition file. It is not under the control of the application
developer. This attribute is used only by dbPutField. It determines if a passive record will
be processed after dbPutField changes a field in the record. Consult the record specific
information in the record reference manual for the setting of individual fields.

BFwdLink

FwdLink

fanout

InLink PP

InLink PP

A

C

BFwdLink

FwdLink

fanout

InLink NPP

InLink PP

A

C

18 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records
Maximize Severity:
Link option

Input and output links have an option called maximize severity. For each such link the
application developer can specify maximize severity TRUE (MS) or maximize severity FALSE
(NMS).

When database input or output links are defined, the application developer can specify if alarm
severities should be propagated across links. For input links the severity is propagated from the
record referred to by the link to the record containing the link. For output links the severity of
the record containing the link is propagated to the record referenced by the link. The alarm
severity is transferred only if the new severity will be greater than the current severity. If the
severity is propagated the alarm status is set equal to LINK_ALARM.

 Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the
application developer never needs to consider the possibility of delays when he defines a set of
related records. The only consideration is deciding when records should be processed and in
what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when
to process a record and for enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, or via
Event.

2. For each periodic group and for each Event group the phase field can be used to specify
processing order.

3. The application programmer has no control over the record processing order of records
in different groups.

4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being
processed. By letting the SDIS field of an entire set of records refer to the same input
record, the entire set can be enabled or disabled simultaneously. See the Record
Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will all be
processed whenever the root record is processed. The set is formed by input, output, and
forward links.

6. The process_passive option specified for each field of each record determines if a
passive record is processed when a dbPutField is directed to the field. The
application developer must be aware of the possibility of record processing being
triggered by external sources if dbPutFields are directed to fields that have
process_passive TRUE.

7. The process_passive option for input and output links provides the application
developer control over how a set of records are scanned.

8. General link structures can be defined. The application programmer should be wary,
however, of defining arbitrary structures without carefully analyzing the processing
order.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 19

Chapter 2: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records
 Guidelines for Asynchronous Records

The previous discussion does not allow for asynchronous records. An example is a GPIB input
record. When the record is processed the GPIB request is started and the processing routine
returns. Processing, however, is not really complete until the GPIB request completes. This is
handled via an asynchronous completion routine. Lets state a few attributes of asynchronous
record processing.

During the initial processing for all asynchronous records the following is done:

9. pact is set TRUE

10. Data is obtained for all input links

11. Record processing is started

12. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

13. Record processing continues

14. Record specific alarm conditions are checked

15. Monitors are raised

16. Forward links are processed

17. pact is set FALSE.

A few attributes of the above rules are:

18. Asynchronous record processing does not delay the scanners.

19. Between the time record processing begins and the asynchronous completion routine
completes, no attempt will be made to again process the record. This is because pact is
TRUE. The routine dbProcess checks pact and does not call the record processing
routine if it is TRUE. Note, however, that if dbProcess finds the record active 10 times
in succession, it raises a SCAN_ALARM.

20. Forward and output links are triggered only when the asynchronous completion routine
completes record processing.

With these rules the following works just fine:

When dbProcess is called for record ASYN, processing will be started but
dbScanPassive will not be called. Until the asynchronous completion routine executes any
additional attempts to process ASYN are ignored. When the asynchronous callback is invoked
the dbScanPassive is performed.

Problems still remain. A few examples are:

Infinite Loop Infinite processing loops are possible.

Assume both A and B are asynchronous passive records and a request is made to process A.
The following sequence of events occur.

1. A starts record processing and returns leaving pact TRUE.

dbScanPasive BASYN
20 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Cached Puts
2. Sometime later the record completion for A occurs. During record completion a request
is made to process B. B starts processing and control returns to A which completes
leaving its pact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request
is made to process A. A starts processing and control returns to B which completes
leaving its pact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application developer
to prevent such loops.

Obtain Old Data A dbGetLink to a passive asynchronous record can get old data.

If A is a passive asynchronous record then the dbGetLink request forces dbProcess to be
called for A. dbProcess starts the processing and returns. dbGetLink then reads the
desired value which is still old because processing will only be completed at a later time.

Delays Consider the following:

The second ASYN record will not begin processing until the first completes, etc. This is not
really a problem except that the application developer must be aware of delays caused by
asynchronous records. Again, note that scanners are not delayed, only records downstream of
asynchronous records.

Task Abort If the processing task aborts and the watch dog task cleans up before the asynchronous
processing routine completes what happens? If the asynchronous routine completes before the
watch dog task runs everything is okay. If it doesn’t? This is a more general question of the
consequences of having the watchdog timer restart a scan task. EPICS currently does not allow
scanners to be automatically restarted.

 Cached Puts

The rules followed by dbPutLink and dbPutField provide for ”cached” puts. This is
necessary because of asynchronous records. Two cases arise.

dbScanPasive
B

dbScanPasive
A

dbGetLink BA

dbScanPasiveASYN dbScanPasiveASYN . . .
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 21

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links
The first results from a dbPutField, which is a put coming from outside the database, i.e.
Channel Access puts. If this is directed to a record that already has pact TRUE because the
record started processing but asynchronous completion has not yet occurred, then a value is
written to the record but nothing will be done with the value until the record is again processed.
In order to make this happen dbPutField arranges to have the record reprocessed when the
record finally completes processing.

The second case results from dbPutLink finding a record already active because of a
dbPutField directed to the record. In this case dbPutLink arranges to have the record
reprocessed when the record finally completes processing. Note that it could already be active
because it appears twice in a chain of record processing. In this case it is not reprocessed
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record
while it is active, each new value is placed in the record but it will still only be processed once,
i.e. last value wins.

 Channel Access Links

A channel access link is:

1. A record link that references a record in a different IOC.

2. A link that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all I/O for channel access links. It does the
following:

At IOC initialization dbCa issues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. It uses ca_field_type and
ca_element_count when it establishes the monitor. It also monitors the alarm status.
Whenever the monitor is invoked the new data is stored in a buffer belonging to dbCa. When
iocCore or the record support module asks for data the data is taken from the buffer and
converted to the requested type.

For each output link, a buffer is allocated the first time iocCore/record support issues a put and
a channel access connection has been made. This buffer is allocated according to
ca_field_type and ca_element_count. Each time iocCore/record support issues a
put, the data is converted and placed in the buffer and a request is made to dbCa to issue a new
ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act like a
channel access link. In particular the records will not be forced to be in the same lock set. As
an example consider a scan record that links to a set of unrelated records, each of which can
cause a lot of records to be processed. It is often NOT desirable to force all these records into
the same lock set. Forcing the links to be handled as channel access links solves the problem.

Because channel access links imply network activity, they are fundamentally different than
database links. For this reason and because channel access does not understand process passive
or maximize severity, the semantics of channel access links are not the same as database links.
Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

INLINK The options for process passive are:
22 EPICS IOC Application Developer’s Guide

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links
• PP or NPP - This link is made a channel access link because the referenced record is not
found in the local IOC. It is not possible to honor PP, thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

• CP - Force the link to be a channel access link and also request that the record
containing the link be processed whenever a monitor occurs.

• CPP - Force the link to be a channel access link and also request that the record
containing the link, if it is passive, be processed whenever a monitor occurs.

Maximize Severity is honored.

OUTLINK The options for process passive are:

• PP or NPP - This link is made a channel access link because the referenced record is not
found in the local IOC. It is not possible to honor PP thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.

FWDLINK A channel access forward link is honored only if it references the PROC field of a record. In
that case a ca_put with a value of 1 is written each time a forward link request is issued.

The options for process passive are:

• PP or NPP - This link is made a channel access link because the referenced record is not
found in the local IOC. It is not possible to honor PP thus it always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 23

Chapter 2: Database Locking, Scanning, And Processing
Channel Access Links
24 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
 Overview

This chapter describes database definitions. The following definitions are described:

• Menu

• Record Type

• Device

• Driver

• Breakpoint Table

• Record Instance

Record Instances are fundamentally different from the other definitions. A file containing
record instances should never contain any of the other definitions and vise-versa. Thus the
following convention is followed:

• Database Definition File - A file that contains any type of definition except record
instances.

• Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each
other via include files.

 Definitions

Summary path "path"
addpath "path"
include "filename"
#comment
menu(name) {

include "filename"
choice(choice_name,"choice_value")
...

}

recordtype(record_type) {
include "filename"
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 25

Chapter 3: Database Definition
Definitions
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}
...

}

device(record_type,link_type,dset_name,”choice_string”)
...

driver(drvet_name)
 ...

breaktable(name) {
raw_value, eng_value,
...

}

#The Following defines a Record Instance

record(record_type,record_name) {
include "filename"
field(field_name,"value")
...

}
#NOTE: GDCT uses grecord instead of record

General Rules

Keywords The following are keywords, i.e. they may not be used as values unless they are enclosed in
quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord
26 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
Unquoted Strings In the summary section, some values are shown as quoted strings and some unquoted. The
actual rule is that any string consisting of only the following characters does not have to be
quoted:

a-z A-Z 0-9 _ - : . [] < > ;

These are also the legal characters for process variable names. Thus in many cases quotes are
not needed.

Quoted Strings A quoted string can contain any ascii character except the quote character ". The quote
character itself can given by using \ as an escape. For example "\"" is a quoted string containing
the single character ".

Macro Substitution Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

Escape Sequences Except for \" the database routines never translate standard C escape sequences, however,a
routine dbTranslateEscape can be used to translate the standard C escape sequences:

\a \b \f \n \r \t \v \\ \? \’ \" \000 \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of
1 or 2 digits) A typical use is device support which expects escape sequences in the parm field:

dbTranslateEscape The routine is:

int dbTranslateEscape(char *s,const char *ct);
/*
 * copies ct to s while substituting escape sequences
 * returns the length of the resultant string
 * The result may contain 0 characters
*/

Define before
referencing

No item can be referenced until it is defined. For example a recordtype menu field can not
reference a menu unless that menu definition has already been defined. Another example is that
a record instance can not appear until the associated record type has been defined.

Multiple Definitions If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once,
then only the first instance is used. Record instance definitions are cumulative, i.e. each time a
new field value is encountered it replaces the previous value.

filename extension By convention:

• Record instances files have the extension ".db"

• Database definition files have the extension ".dbd".

path addpath The path follows the standard Unix convention, i.e. it is a list of directory names separated by
colons (Unix) or semicolons (winXX).
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 27

Chapter 3: Database Definition
Definitions
Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is ; instead of :

The path command specifies the current path. The addpath appends directory names to the
current path. The path is used to locate the initial database file and included files. An empty
dir at the beginning, middle, or end of a non-empty path string means the current directory.
For example:

 nnn::mmm # Current directory is between nnn and mmm
 :nnn # Current directory is first
 nnn: # Current directory is last

Utilities which load database files (dbExpand, dbLoadDatabase, etc.) allow the user to
specify an initial path. The path and addpath commands can be used to change or extend
the initial path.

The initial path is determined as follows:

If an initial path is specified, it is used. Else:
If the environment variable EPICS_DB_INCLUDE_PATH is defined, it is used. Else:
the default path is ".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the
specified file is used.

include Format:

include "filename"

An include statement can appear at any place shown in the summary. It uses the path as
specified above.

comment The comment symbol is "#". Whenever the comment symbol appears, it and all characters
through the end of the line are ignored.

menu Format:

menu(name) {
choice(choice_name,"choice_value")
...

}

Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate
definitions are specified, only the first is used.
choice_name - The name placed in the enum generated by dbToMenuH or
dbToRecordtypeH
choice_value - The value associated with the choice.

Example:

menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")

}

28 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
Record Type Format:

recordtype(record_type) {
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

}
...

}

rules • asl - Access Security Level. The default is ASL1. Access Security is discussed in a later
chapter. Only two values are permitted for this field (ASL0 and ASL1). Fields which
operators normally change are assigned ASL0. Other fields are assigned ASL1. For
example, the VAL field of an analog output record is assigned ASL0 and all other fields
ASL1. This is because only the VAL field should be modified during normal operations.

• initial - Initial Value.

• promptgroup - Prompt group to which field belongs. This is for use by Database
Configuration Tools. This is defined only for fields that can be given values by database
configuration tools. File guigroup.h contains all possible definitions. The different
groups allow database configuration tools to present the user with groups of fields rather
than all prompt fields. I don’t know of any tool that currently uses groups.

• prompt - A prompt string for database configuration tools. Optional if promptgroup
is not defined.

• special - If specified, then special processing is required for this field at run time.

• pp - Should a passive record be processed when Channel Access writes to this field?
The default is NO.

• interest - Only used by the dbpr shell command.

• base - For integer fields, a base of DECIMAL or HEX can be specified. The default is
DECIMAL.

• size - Must be specified for DBF_STRING fields.

• extra - Must be specified for DBF_NOACCESS fields.

• menu - Must be specified for DBF_MENU fields. It is the name of the associated menu.

definitions • record_type - The unique name of the record type. If duplicates are specified, only the
first definition is used.

• field_name - The field name. Only alphanumeric characters are allowed. When include
files are generated, the field name is converted to lower case. Previous versions of
EPICS required that field name be a maximum of four characters. Although this
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 29

Chapter 3: Database Definition
Definitions
restriction no longer exists, problems may arrise with some Channel Access clients if
longer field names are chosen.

• field_type - This must be one of the following values:

• DBF_STRING

• DBF_CHAR

• DBF_UCHAR

• DBF_SHORT

• DBF_USHORT

• DBF_LONG

• DBF_ULONG

• DBF_FLOAT

• DBF_DOUBLE

• DBF_ENUM

• DBF_MENU

• DBF_DEVICE

• DBF_INLINK

• DBF_OUTLINK

• DBF_FWDLINK

• DBF_NOACCESS

• asl_level - This must be one of the following values:

• ASL0

• ASL1 (default value)

• init_value - A legal value for data type.

• prompt_value - A prompt value for database configuration tools.

• gui_group - This must be one of the following:

• GUI_COMMON

• GUI_ALARMS

• GUI_BITS1

• GUI_BITS2

• GUI_CALC

• GUI_CLOCK

• GUI_COMPRESS

• GUI_CONVERT

• GUI_DISPLAY

• GUI_HIST

• GUI_INPUTS

• GUI_LINKS

• GUI_MBB

• GUI_MOTOR

• GUI_OUTPUT

• GUI_PID

• GUI_PULSE

• GUI_SELECT

• GUI_SEQ1

• GUI_SEQ2

• GUI_SEQ3
30 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
• GUI_SUB

• GUI_TIMER

• GUI_WAVE

• GUI_SCAN
NOTE: GUI types were invented with the intention of allowing database
configuration tools to prompt for groups of fields and when a user selects a group
the fields within the group. This feature has never been used and a result is that
many record types have not assigned the correct GUI groups to each field.

• special_value must be one of the following:

• An integer value greater than 103. In this case, the record support special routine
is called whenever the field is modified by database access. This feature is
present only for compatibility. New support modules should use SPC_MOD.

The following value disallows access to field.

• SPC_NOMOD - This means that field can not be modified at runtime except by the
record/device support modules for the record type.

The following values are used for database common. They must NOT be used for
record specific fields.

• SPC_SCAN - Scan related field.

• SPC_ALARMACK - Alarm acknowledgment field.

• SPC_AS - Access security field.

The following value is used if record support wants to trap dbNameToAddr
calls.

• SPC_DBADDR - This is set if the record support cvt_dbaddr routine should be
called whenever dbNameToAddr is called, i.e. when code outside record/device
support want to access the field.

The following values all result in the record support special routine being called
whenever database access modifies the field. The only reason for multiple values
is that originally it seemed like a good idea. New support modules should only
use SPC_MOD.

• SPC_MOD - Notify when modified, i.e. call the record support special routine
whenever the field is modified by database access.

• SPC_RESET - a reset field is being modified.

• SPC_LINCONV - A linear conversion field is being modified.

• SPC_CALC - A calc field is being modified.

• pp_value - Should a passive record be processed when Channel Access writes to this
field? The allowed values are:

• NO (default)

• YES

• interest_level - An interest level for the dbpr command.

• base - For integer type fields, the default base. The legal values are:

• DECIMAL (Default)

• HEX

• size_value - The number of characters for a DBF_STRING field.

• extra_info - For DBF_NOACCESS fields, this is the C language definition for the field.
The definition must end with the fieldname in lower case.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 31

Chapter 3: Database Definition
Definitions
Example The following is the definition of the binary input record.

recordtype(bi) {
include "dbCommon.dbd"
field(INP,DBF_INLINK) {

prompt("Input Specification")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(VAL,DBF_ENUM) {

prompt("Current Value")
asl(ASL0)
pp(TRUE)

}
field(ZSV,DBF_MENU) {

prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(OSV,DBF_MENU) {

prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(COSV,DBF_MENU) {

prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(ZNAM,DBF_STRING) {

prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}
field(ONAM,DBF_STRING) {

prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}
field(RVAL,DBF_ULONG) {

prompt("Raw Value")
pp(TRUE)
32 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
}
field(ORAW,DBF_ULONG) {

prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}
field(MASK,DBF_ULONG) {

prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}
field(LALM,DBF_USHORT) {

prompt("Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}
field(MLST,DBF_USHORT) {

prompt("Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}
field(SIOL,DBF_INLINK) {

prompt("Sim Input Specifctn")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SVAL,DBF_USHORT) {

prompt("Simulation Value")
}
field(SIML,DBF_INLINK) {

prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SIMM,DBF_MENU) {

prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}
field(SIMS,DBF_MENU) {

prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)
interest(2)
menu(menuAlarmSevr)

}
}

device This definition defines a single device support module.

device(record_type,link_type,dset_name,”choice_string”)
...
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 33

Chapter 3: Database Definition
Definitions
definitions • record_type - Record type. The combination of record_type and
choice_string must be unique. If the same combination appears multiple times, the
first definition is used.

• link_type - Link type. This must be one of the following:

• CONSTANT

• PV_LINK

• VME_IO

• CAMAC_IO

• AB_IO

• GPIB_IO

• BITBUS_IO

• INST_IO

• BBGPIB_IO

• RF_IO

• VXI_IO

• dset_name - The exact name of the device support entry table without the trailing
"DSET". Duplicates are not allowed.

• choice_string Choice string for database configuration tools. Note that it must be
enclosed in "". Note that for a given record type, each choice_string must be
unique.

Examples device(ai,CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")

driver Each driver definition contains the name of a driver entry table. It has the form:

driver(drvet_name)

Definitions • drvet_name - If duplicates are defined, only the first is used.

Examples driver(drvVxi)
driver(drvXy210)

breakpoint table This defines a breakpoint table.

breaktable(name) {
raw_value, eng_value,
...

}

Definitions • name - Name of breakpoint table. If duplicates are specified only the first is used.

• raw_value - The raw value, i.e. the actual ADC value associated with the beginning of
the interval.

• eng_value - The engineering value associated with the beginning of the interval.

Example breaktable(typeJdegC) {
 0.000000 0.000000
34 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
 365.023224 67.000000
 1000.046448 178.000000
 3007.255859 524.000000
 3543.383789 613.000000
 4042.988281 692.000000
 4101.488281 701.000000
}

record instance Each record instance has the following definition:

record(record_type,record_name) {
field(field_name,"value")
...

}

definitions • record_type - The record type.

• record_name - The record name. This must be composed of the following characters:
 a-z A-Z 0-9 _ - : [] < > ;
 NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for each
field is the value assigned to the field.

• field_name - The field name

• value - Depends on field type.

• DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.

• DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG,
DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied,
i.e. a leading 0 means the value is given in octal and a leading 0x means that
value is given in hex.

• DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number.

• DBF_MENU
The string must be one of the valid choices for the associated menu.

• DBF_DEVICE
The string must be one of the valid device choice strings.

• DBF_INLINK, DBF_OUTLINK
The allowed value depends on the bus type of the associated DTYP field. These
are as follows:
NOTE: a DTYP of CONSTANT can be either a constant or a PV_LINK.

• CONSTANT
A constant valid for the field associated with the link.

• PV_LINK
A value of the form:

 record.field process maximize

field, process, and maximize are optional.
The default value for field is VAL.
process can have one of the following values:

• NPP - No Process Passive (Default)
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 35

Chapter 3: Database Definition
Definitions
• PP - Process Passive
• CA - Force link to be a channel access link
• CP - CA and process on monitor
• CPP - CA and process on monitor if record is passive

NOTES:
CP and CPP are valid only for INLINKs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel
access link it must reference the PROC field.

maximize can have one of the following values
• NMS - No Maximize Severity (Default)
• MS - Maximize severity

• VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
 This field is optional and is device specific.

• CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch, crate, station, subaddress, and function should be
obvious to camac users. Subaddress and function are optional (0 if
not given). Parm is also optional and is device dependent (25 characters
max).

• AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char max)

• GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)

• BITBUS_IO
#Llink Nnode Pport Ssignal @parm
link - link, i.e. vme bitbus interface.
node - bitbus node
port - port on the node
signal - signal on port
parm - device specific character string(31 char max)

• INST_IO
@parm
parm - Device dependent character string(35 char max)

• BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address
parm - optional device dependent character string(31 char max)

• RF_IO
36 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Definitions
#Rcryo Mmicro Ddataset Eelement
• VXI_IO

#Vframe Cslot Ssignal @parm (Dynamic addressing)
 or
#Vla Signal @parm (Static Addressing)
frame - VXI frame number
slot - Slot within VXI frame
la - Logical Address
signal - Signal Number
parm - device specific character string(25 char max)

• DBF_FWDLINK
This is either not defined or else is a PV_LINK. See above for definitions.

Examples record(ai,STS_AbAiMaS0) {
field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4to20MA")
field(INP,"#L0 A2 C0 S0 F0 @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")
field(LOPR,"4")

}
record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-1771OFE")
field(OUT,"#L0 A2 C1 S0 F0 @")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmp")
field(DRVH,"20")
field(DRVL,"4")
field(HOPR,"20")
field(LOPR,"4")

}
record(bi,STS_AbDiA0C0S0) {

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0 A0 C0 S0 F0 @")
field(ZNAM,"Off")
field(ONAM,"On")

}

record attribute Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can
be accessed via database and channel access. An attribute is given a name the acts like a field
name which has the same value for every instance of the record type. Two attributes are
generated automatically for each record type: RTYP and VERS. The value for RTYP is the
record type name. The default value for VERS is "none specified", which can be changed by
record support. Record support can call the following routine to create new attributes or change
existing attributes:
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 37

Chapter 3: Database Definition
Breakpoint Tables
long dbPutAttribute(char *recordTypename,
 char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

 Breakpoint Tables

The menu menuConvert is handled specially by the ai and ao records (field is LINR).
These records allow raw data to be converted to/from engineering units via one of the
following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversion and
linear conversion. The remaining choices are assumed to be the names of breakpoint tables. If
a breakpoint table is chosen, the record support modules calls cvtRawToEngBpt or
cvtEngToRawBpt. You can look at the ai and ao record support modules for details.

If a user wants to add additional breakpoint tables, then the following should be done:

• Copy the menuConvert.dbd file from EPICS base/src/bpt

• Add definitions for new breakpoint tables to the end

• Make sure modified menuConvert.dbd is loaded into the IOC instead of EPICS
version.

Please note that it is only necessary to load a breakpoint file if a record instance actually
chooses it. It should also be mentioned that the Allen Bradley IXE device support misuses the
LINR field. If you use this module, it is very important that you do not change any of the
EPICS supplied definitions in menuConvert.dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the
IOC before iocInit is called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is
desirable to create a breakpoint table from a table of raw values representing equally spaced
engineering units. A good example is the Thermocouple tables in the OMEGA Engineering,
INC Temperature Measurement Handbook. A tool makeBpt is provided to convert such data
to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to
equally spaced engineering values is:

!comment line
<header line>
<data table>

The header line contains the following information:

• Name: ASCII string specifying breakpoint table name
38 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.
• Low Value Eng: Engineering Units Value for first breakpoint table entry

• Low Value Raw: Raw value for first breakpoint table entry

• High Value Eng: Engineering Units: Highest Value desired

• High Value Raw: Raw Value for High Value Eng

• Error: Allowed error (Engineering Units)

• First Table: Engineering units corresponding to first data table entry

• Last Table: Engineering units corresponding to last data table entry

• Delta Table: Change in engineering units per data table entry

 An example definition is:

”TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing

makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input
filename with the extension of dbd.

Another way to create the breakpoint table is to include the following definition in a
Makefile.Vx:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form
bpt<name>.data and a breakpoint table bpt<name>.dbd.

 Menu and Record Type Include File Generation.

Introduction Given a file containing menus, dbToMenuH generates an include file that can be used by any
code which uses the associated menus. Given a file containing any combination of menu
definitions and record type definitions, dbToRecordtypeH generates an include file that can
be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions.
Users generating local record types are encouraged to do likewise.

• Each menu that is either for fields in database common (for example menuScan) or is
of global use (for example menuYesNo) is defined in a separate file. The name of the
file is the same as the menu name with an extension of dbd. The name of the generated
include file is the menu name with an extension of h. Thus menuScan is defined in a
file menuScan.dbd and the generated include file is named menuScan.h

• Each record type definition is defined in a separate file. In addition, this file contains any
menu definitions that are used only by that record type. The name of the file is the same
as the recordtype name followed by Record.dbd. The name of the generated include
file is the same name with an extension of h. Thus aoRecord is defined in a file
aoRecord.dbd and the generated include file is named aoRecord.h. Since
aoRecord has a private menu called aoOIF, the dbd file and the generated include file
have definitions for this menu. Thus for each record type, there are two source files
(xxxRecord.dbd and xxxRecord.c) and one generated file (xxxRecord.h).
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 39

Chapter 3: Database Definition
Menu and Record Type Include File Generation.
Before continuing, it should be mentioned that Application Developers don’t have to execute
dbToMenuH or dbToRecordtypeH. If a developer uses the proper naming conventions, it is
only necessary to add definitions to their Makefile.Vx. The definitions are:

MENUS += menuXXX.h (menus)
RECTYPES += xxRecord.h (recordtype & record specific menus)
USER_DBDFLAGS += -I dir
USER_DBDFLAGS += -S macsub

Consult the document on building IOC applications for details.

dbToMenuH This tool is executed as follows:

dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extension of h.
Multiple -I options can be specified for an include path and multiple -S options for macro
substitution.

 Example menuPriority.dbd, which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include file, menuPriority.h, generated by dbToMenuH contains:

#ifndef INCmenuPriorityH
#define INCmenuPriorityH
typedef enum {

menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}menuPriority;
#endif /*INCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

dbToRecordtypeH This tool is executed as follows:

dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extension of h.
Multiple -I options can be specified for an include path and multiple -S options for macro
substitution.

 Example aoRecord.dbd, which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental")

}
recordtype(ao) {

include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {
40 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Menu and Record Type Include File Generation.
prompt("Desired Output")
asl(ASL0)
pp(TRUE)

}
field(OVAL,DBF_DOUBLE) {

prompt("Output Value")
}
... (Many more field definitions
}

}

The include file, aoRecord.h, generated by dbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH
#define INCaoOIFH
typedef enum {
 aoOIF_Full,
 aoOIF_Incremental,
}aoOIF;
#endif /*INCaoOIFH*/
#ifndef INCaoH
#define INCaoH
typedef struct aoRecord {
 char name[29]; /*Record Name*/
 ... Remaining fields in database common
 double val; /*Desired Output*/
 double oval; /*Output Value*/
 ... remaining record specific fields
} aoRecord;
#define aoRecordNAME 0
... defines for remaining fields in database common
#define aoRecordVAL 42
#define aoRecordOVAL 43
... defines for remaining record specific fields
#ifdef GEN_SIZE_OFFSET
int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{
 aoRecord *prec = 0;
 pdbRecordType->papFldDes[0]->size=sizeof(prec->name);
 pdbRecordType->papFldDes[0]->offset=

(short)((char *)&prec->name - (char *)prec);
 ... code to compute size&offset for other fields in dbCommon
 pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
 pdbRecordType->papFldDes[42]->offset=

(short)((char *)&prec->val - (char *)prec);
 pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
 pdbRecordType->papFldDes[43]->offset=
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 41

Chapter 3: Database Definition
Utility Programs
(short)((char *)&prec->oval - (char *)prec);
 ... code to compute size&offset for remaining fields
 pdbRecordType->rec_size = sizeof(*prec);
 return(0);
}
#endif /*GEN_SIZE_OFFSET*/

The analog output record support module and all associated device support modules should use
this include file. No other code should use it.

 Discussion of
Generated File

Only the analog output record support module and associated device support should include
this record definition. Let’s discuss the various parts of the file.:

• The enum generated from the menu definition should be used to reference the value of
the field associated with the menu.

• The typedef and structure defining the record are used by record support and
device support to access fields in an analog output record.

• A #define is present for each field within the record. This is useful for the record
support routines that are passed a pointer to a DBADDR structure. They can have code
like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

...
 break;
case aoRecordXXX:

...
break;

default:
...

}

The C source routine aoRecordSizeOffset is automatically called when a record type file
is loaded into an IOC. Thus user code does not have to be aware of this routine except for the
following convention: The associate record support module MUST include the statements:

#define GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

 Utility Programs

dbExpand dbExpand -Idir -Smacsub file1 file2 ...

Multiple -I options can be specified for an include path and multiple -S options for macro
substitution. Note that the environment variable EPICS_DB_INCLUDE_PATH can also be
used in place of the -I options.

NOTE: Host Utility Only
42 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Utility Programs
This command reads the input files and then writes, to stdout, a file containing ASCII
definitions for all information described by the input files. The difference is that comment lines
do not appear and all include files are expanded.

This routine is extremely useful if an IOC is not using NFS for the dbLoadDatabase
commands. It takes more than 2 minutes to load the base/rec/base.dbd file into an IOC if
NFS is not used. If dbExpand creates a local base.dbd file, it takes about 7 seconds to load
(25 MHZ 68040 IOC).

dbLoadDatabase dbLoadDatabase(char *db_file, char *path, char *substitutions)

NOTES:

• IOC Only

• Using a path on the ioc does not work very well.

• Both path and substitutions can be null, i.e. they do not have to be given.

This command loads a database file containing any of the definitions given in the summary at
the beginning of this chapter.

dbfile must be a file containing only record instances in standard ASCII format. Such files
should have an extension of “.db”.

As each line of dbfile is read, the substitutions specified in substitutions is
performed. The substitutions are specified as follows:

“var1=sub1,var2=sub3,...”

Variables are specified in the dbfile as $(variable_name). If the substitution string

"a=1,b=2,c=\"this is a test\""

were used, any variables $(a), $(b), $(c) would be substituted with the appropriate data.

EXAMPLE For example, let test.db be:

record(ai,"$(pre)testrec1")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3") {

field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:

dbLoadDatabase("test.db",0,"pre=TEST,STR=test,SCAN=Passive")

gives the same results as loading:

record(ai,"TESTtestrec1")
record(ai,"TESTtestrec2")
record(stringout,"TESTtestrec3") {

field(VAL,"test")
field(SCAN,"Passive")

}

dbLoadRecords dbLoadRecords(char* dbfile, char* substitutions)
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 43

Chapter 3: Database Definition
Utility Programs
NOTES:

• IOC Only.

• dbfile must contain only record instances.

• dbLoadRecords is no longer needed.It will probably go away in the future. At
the present time dbLoadRecords loads faster than dbLoadDatabase.

dbLoadTemplate dbLoadTemplate(char* template_def)

dbLoadTemplate reads a template definition file. This file contains rules about loading
database instance files, which contain $(xxx) macros, and performing substitutions.

template_def contains the rules for performing substitutions on the instance files. For
convenience two formats are provided. The format is:

file name.db {
put Version-1 or Version-2 here

}

Version-1

{ set1var1=sub1, set1var2=sub2,...... }
{ set2var1=sub1, set2var2=sub2,...... }
{ set3var1=sub1, set3var2=sub2,...... }

- or -

Version-2

pattern{ var1,var2,var3,....... }
{ sub1_for_set1, sub2_for_set1, sub3_for_set1, ... }
{ sub1_for_set2, sub2_for_set2, sub3_for_set2, ... }
{ sub1_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (file name.db) specifies the record instance input file.

Each set of definitions enclosed in {} is variable substitution for the input file. The input file
has each set applied to it to produce one composite file with all the completed substitutions in
it. Version 1 should be obvious. In version 2, the variables are listed in the “pattern{}” line,
which must precede the braced substitution lines. The braced substitution lines contains sets
which match up with the pattern{} line.

EXAMPLE Two simple template file examples are shown below. The examples specify the same
substitutions to perform: this=sub1 and that=sub2 for a first set, and this=sub3 and
that=sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }

}

file test.db {
pattern{this,that}
{sub1,sub2}
{sub3,sub4 }

Assume that test.db is:

record(ai,"$(this)record") {
44 EPICS IOC Application Developer’s Guide

Chapter 3: Database Definition
Utility Programs
field(DESC,"this = $(this)")
}
record(ai,"$(that)record") {

field(DESC,"this = $(that)")
}

Using dbLoadTemplate with either input is the same as defining the records:

record(ai,"sub1record") {
field(DESC,"this = sub1")

}
record(ai,"sub2record") {

field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}
record(ai,"sub4record") {

field(DESC,"this = sub4")
}

dbReadTest dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance
files. It just reads all the specified files

Multiple -I, and -S options can be specified. An arbitrary number of database definition and
database instance files can be specified.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 45

Chapter 3: Database Definition
Utility Programs
46 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
 Overview

After vxWorks is loaded at IOC boot time, the following commands, normally in a vxWorks
startup command file, are issued to load and initialize the control system software:

For many board support packages the following must be added
#cd <full path to target bin directory>
< cdCommands
cd appbin
ld < iocCore
ld < <appname>Lib

 cd startup
dbLoadDatabase(”<file>.dbd”)

 dbLoadDatabase(”<file>.db")
dbLoadRecords("<file>.db")

and/or
dbLoadTemplates("<file>.db,"<template_def>")

. . .
iocInit

NOTE: The "IOC Applications: Building and Source/Release Control" manual describes
procedures and tools for building IOC applications. This manual should be consulted before
creating new startup file.

cdCommands defines vxWorks global variables that allow vxWorks cd commands for
convient locations. For example in one of my test areas the following cdCommands file
appears:

startup = "/home/phoebus6/MRK/epics/test/iocBoot/iocaccess"
appbin = "/home/phoebus6/MRK/epics/test//bin/mv167"
share = "/home/phoebus/MRK/iocsys/share"

NOTE: This file is automatically generated via make rules.

The first ld command loads the core EPICS software. The second command loads the record,
device, and driver support plus any other application specific modules.

One or more dbLoadDatabase commands load database definition files.

One or more dbLoadDatabase , dbLoadRecords, and dbLoadTemplate commands
load record instance definitions.

iocInit initializes the various epics components.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 47

Chapter 4: IOC Initialization
iocInit
 iocInit

iocInit performs the following functions:

coreRelease Prints a messages showing which version of iocCore is being loaded.

getResources See below. This is obsolete feature.

iocLogInit Initialize system wide logging facility.

taskwdInit start the task watchdog task. This task accepts requests to watch other tasks. It runs
periodically and checks to see if any of the tasks is suspended. If so it issues an error message.
It can also optionally invoke a callback routine

callbackInit Start the general purpose callback tasks. Three tasks are started with the only difference being
scheduling priority.

dbCaLinkInit Calls dbCaLinkInit. The initializes the task that handles database channel access links.

initDrvSup InitDrvSup locates each device driver entry table and calls the init routine of each driver.

initRecSup InitRecSup locates each record support entry table and calls the init routine.

initDevSup InitDevSup locates each device support entry table and calls the init routine with an
argument specifying that this is the initial call.

ts_init Ts_init initializes the timing system. If a hardware timing board resides in the IOC,
hardware timing support is used, otherwise software timing is used. If the IOC has been
declared to be a master timer, the initial time is obtained from the UNIX master timer,
otherwise the initial time is obtained from the IOC master timer.

initDatabase InitDatabase makes three passes over the database performing the following functions:

• Pass 1: Initializes following fields: rset, dset, mlis. Calls record support
init_record (First pass)

• Pass 2: Convert each PV_LINK to DB_LINK or CA_LINK

• Pass 3: Calls record support init_record (second pass)

After the database is initialized dbLockInitRecords is called. It creates the lock sets.

finishDevSup InitDevSup locates each device support entry table and calls the init routine with an
argument specifying that this is the finish call.

scanInit The periodic, event, and io event scanners are initialized and started.

interruptAccept A global variable ”interruptAccept” is set TRUE. Until this time no request should be
made to process records and all interrupts should be ignored.
48 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
Changing iocCore fixed limits
initialProcess dbProcess is called for all records that have PINI TRUE.

rsrv_init The Channel Access server is started

 Changing iocCore fixed limits

The following commands can be issued after iocCore is loaded to change iocCore fixed limits.
The commands should be given before any dbLoad commands are given.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)

callbackSet
QueueSize

Requests for the general putpose callback tasks are placed in a ring buffer. This command can
be used to set the size for the ring buffers. The default is 2000. A message is issued when a ring
buffer overflows. It should rarely be necessary to override this default. Normally the ring buffer
overflow messages appear when a callback task fails.

dbPvdTableSize Record instance names are stored in a process variable directory, which is a hash table. The
default number of hash entries is 512. dbPvdTableSize can be called to change the size. It
must be called before any dbLoad commands and must be a power of 2 between 256 and
65536. If an IOC contains very large databases (several thousand) then a larger hash table size
speeds up searches for records.

scanOnceSet
QueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the
ring buffer. The default is 1000. t should rarely be necessary to override this default. Normally
the ring buffer overflow messages appear when the scanOnce task fails.

errlogInit Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

 TSconfigure

EPICS supports several methods for an IOC to obtain time so that accurate time stamps can be
generated. The default is to obtain NTP time stamps from another computer. The following can
be used to change the defaults. If ant argument is given the value 0 then the default is applied.

TSConfigure(master,sync_rate,clock_rate,master_port,slave_port)

• master: 1=master timing IOC, 0=slave timing, default is slave.

• sync_rate: The clock sync rate in seconds. This rate tells how often the synchronous
time stamp support software will confirm that an IOC clock is synchronized. The default
is 10 seconds.

• clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event
system. The value will be set to the IOC’s internal clock rate when soft timing is used.

• master_port: UDP port for master. The default is 18233

• slave_port: UDP port for slave.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 49

Chapter 4: IOC Initialization
initHooks
• time_out: UDP information request time out in milliseconds, if zero is entered here,
the default will be used which is 250ms.

• type: 0=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support", by Jim Kowalkowski for details. Note that the
default is to be a slave. If no master is found the slave will obtain a starting time from Unix.

 initHooks

NOTE: starting with release 3.13.0beta12 initHooks was changed drastically (thanks to
Benjamin Franksen at BESY). Old initHooks.c functions will still work but users are
encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during
ioc initialization. The states are defined in initHooks.h, which contains the following
definitions:

typedef enum {
 initHookAtBeginning,
 initHookAfterGetResources,
 initHookAfterLogInit,
 initHookAfterCallbackInit,
 initHookAfterCaLinkInit,
 initHookAfterInitDrvSup,
 initHookAfterInitRecSup,
 initHookAfterInitDevSup,
 initHookAfterTS_init,
 initHookAfterInitDatabase,
 initHookAfterFinishDevSup,
 initHookAfterScanInit,
 initHookAfterInterruptAccept,
 initHookAfterInitialProcess,
 initHookAtEnd
}initHookState;

typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before iocInit reaches the desired state will be called
when iocInit reaches that state. The following is skeleton code to use the facility:

#include <vxWorks.h>
#include <stdlib.h>
#include <stddef.h>
#include <initHooks.h>

static initHookFunction myHookFunction;

int myHookInit(void)
{
 return(initHookRegister(myHookFunction));
}

50 EPICS IOC Application Developer’s Guide

Chapter 4: IOC Initialization
Environment Variables
static void myHookFunction(initHookState state)
{
 switch(state) {
 case initHookAfterInitRecSup:
 ...
 break;
 case initHookAfterInterruptAccept:
 ...
 break;
 default:
 break;
 }
}

Assuming the code is in file myHook.c, the st.cmd file should contain (before iocInit).

 ld < bin/myHook.o
 myHookInit

An arbitrary number of functions can be registered.

 Environment Variables

The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_MIN_WEST
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

These variables can be overridden via the vxWorks putenv function. For example:

 putenv("EPICS_TS_MIN_WEST=300")

Any putenv commands should be issued after iocCore is loaded and before any dbLoad
commands.

 Initialize Logging

Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization
just realise that the following can be used if you want to use a private host log file.

putenv("EPICS_IOC_LOG_PORT=7004")
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 51

Chapter 4: IOC Initialization
Get Resource Definitions
putenv("EPICS_IOC_LOG_INET=164.54.8.12")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.

iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.

 Get Resource Definitions

NOTE: This facility is supported for compatibility with previous releases. It should NOT be
used for new applications.

iocInit accepts a string argument which is the name of a resource file which can set values of
IOC global variables. The resource file contains lines with the following format:

global_name type value

global_name is the name of the variable to be changed.

type must be one of the following:

DBF_STRING
DBF_SHORT
DBF_LONG
DBF_FLOAT
DBF_DOUBLE

value is the value to be assigned to the global variable.

Please note that type MUST be set so that it matches the actual type of the global variable
because there is no way for GetResources to know the actual type.
52 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
 Overview

This chapter describes access security. i.e. the system that limits access to IOC databases. It
consists of the following sections:

1. Overview - This section

2. Quick start - A summary of the steps necessary to start access security.

3. User’s Guide - This explains what access security is and how to use it.

4. Design Summary - Functional Requirements and Design Overview.

5. Application Programmer’s Interface

6. Database Access Security - Access Security features for EPICS IOC databases.

7. Channel Access Security - Access Security features in Channel Access

8. Implementation Overview

The requirements for access security were generated at ANL/APS in 1992. The requirements
document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

 Quick Start

In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

• Record instances may have to have values assigned to field ASG. If ASG is null
the record is in group DEFAULT.

• Access security files can be reloaded after iocInit via a subroutine record with
asSubInit and asSubProcess as the associated subroutines. Writing the
value 1 to this record will cause a reload.

• The vxWorks startup file must contain the following command before iocInit.
asSetFilename(“accessSecurityFile”)

The following is an optional command.
asSetSubstitutions(“var1=sub1,var2=sub2,...”))

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will NEVER be started..
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 53

Chapter 5: Access Security
User’s Guide
• If asSetFile is given and any error occurs while first initializing access security, then
ALL access to that ioc is denied.

• If after successfully starting access security, an attempt is made to restart and an error
occurs then the previous access security configuration is maintained.

 User’s Guide

Features Access security protects IOC databases from unauthorized Channel Access Clients. Access
security is based on the following:

• Who: Userid of the channel access client.

• Where: Hostid where the user is logged on. This is the host on which the channel
access client exists. Thus no attempt is made to see if a user is local or is remotely
logged on to the host.

• What: Individual fields of records are protected. Each record has a field containing the
Access Security Group (ASG) to which the record belongs. Each field has an access
security level, which must be 0 or 1.The security level is defined in the ascii record
definition file. Thus the access security level for a field is the same for all record
instances of a record type.

• When: Access rules can contain input links and calculations similar to the calculation
record.

Limitations An IOC database can be accessed only via Channel Access or via the vxWorks shell. It is
assumed that access to the local IOC console is protected via physical security and telnet/
rlogin access protected via normal Unix and physical security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be
used to limit access to the subnet on which the iocs reside.

Definitions This document uses the following terms:

• ASL: Access Security Level (Called access level in Req Doc)

• ASG: Access Security Group (Called PV Group in Req Doc)

• UAG: User Access Group

• HAG: Host Access Group

Access Security
Configuration File

This section describes the format of a file containing definitions of the user access groups, host
access groups, and access security groups. An IOC creates an access configuration database by
reading an access configuration file (the extension .acf is recommended). Lets first give a
simple example and then a complete description of the syntax.

Simple Example UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
ASG(DEFAULT) {

RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)
54 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
User’s Guide
}
}

These rules provide read access to anyone located anywhere and write access to user1 and
user2 if they are located at host1 or host2.

Syntax Definition In the following description:

[] Lists optional elements
| Separator for alternatives
... Means that an arbitrary number of definitions may be given.

Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(”<calculation>”)

}
...

}]
...

Discussion • UAG: User Access Group. This is a list of userids. The list may be empty. The same
userid can appear in multiple UAGs. For iocs the userid is taken from the user field of
the boot parameters.

• HAG: Host Access Group. This is a list of host names. It may be empty. The same host
name can appear in multiple HAGs. For iocs the host name is taken from the target
name of the boot parameters.

• ASG: An access security group. The group ”DEFAULT” is a special case. If a member
specifies a null group or a group which has no ASG definition then the member is
assigned to the group ”DEFAULT”.

• INP<index> Index must have one of the values “A” to “L”. These are just like
the INP fields of a calculation record. It is necessary to define INP fields if a
CALC field is defined in any RULE for the ASG.

• RULE This defines access permissions. <level> must be 0 or 1. Permission
for a level 1 field implies permission for level 0 fields. The permissions are NONE,
READ, and WRITE. WRITE permission implies READ permission. The standard
EPICS record types have all fields set to level 1 except for VAL, CMD (command),
and RES (reset).

• UAG specifies a list of user access groups that can have the access
privilege. If UAG is not defined then all users are allowed.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 55

Chapter 5: Access Security
User’s Guide
• HAG specifies a list of host access groups that have the access privilege. If
HAG is not defined then all hosts are allowed.

• CALC is just like the CALC field of a calculation record except that the
result must evaluate to TRUE or FALSE. If the calculation results in (0,1)
meaning (FALSE,TRUE) then the rule (doesn’t apply, does apply) . The
actual test is .99 < result < 1.01.

Each IOC record contains a field ASG, which specifies the name of the ASG to which the
record belongs. If this field is null or specifies a group which is not defined in the access
security file then the record is placed in group ”DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is

not defined all users are accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is

not defined all hosts are accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of

the INP fields associated with this calculation are in INVALID alarm severity the
calculation is considered false. The actual test for TRUE is .99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access
permission.

ascheck - Check
Syntax of Access
Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by
issuing the command:

ascheck -S “xxx=yyy,...” < "filename"

This is a Unix command. It displays errors on stdout. If no errors are detected it prints
nothing. Only syntax errors not logic errors are detected. Thus it is still possible to get your self
in trouble. The flag -S means a set of macro substitutions may appear. This is just like the
macro substitutions for dbLoadDatabase.

IOC Access Security
Initialization

In order to have access security turned on during IOC initialization the following command
must appear in the startup file before iocInit is called:

asSetFilename("<access security file>")

If this command does not appear then access security will not be started by iocInit. If an
error occurs when iocInit calls asInit than all access to the ioc is disabled, i.e. no channel
access client will be able to access the ioc.

Access security also supports macro substitution just like dbLoadDatabase. The following
command specifies the desired substitutions:

asSetSubstitutions(“var1=sub1,var2=sub2,...”)

This command must be issued before iocInit.

After an IOC is initialized the access security database can be changed. The preferred way is
via the subroutine record described in the next section. It can also be changed by issuing the
following command to the vxWorks shell:

asInit
56 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
User’s Guide
It is also possible to reissue asSetFilename and/or asSetSubstitutions before
asInit. If any error occurs during asInit the old access security configuration is
maintained. It is NOT permissable to call asInit before iocInit is called.

Restarting access security after ioc initialization is an expensive operation and should not be
used as a regular procedure.

Database
Configuration

Access Security
Group

Each database record has a field ASG which holds a character string. Any database
configuration tool can be used to give a value to this field. If the ASG of a record is not defined
or is not equal to a ASG in the configuration file then the record is placed in DEFAULT.

Subroutine Record
Support

Two subroutines, which can be attached to a subroutine record, are available (provided with
iocCore):

asSubInit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to load a
new access configuration database. To change the access configuration:

1. Modify the file specified by the last call to asSetFilename so that it contains the new
configuration desired.

2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel
access.

The following action is taken:

1. When the value is found to be 1, asInit is called and the value set back to 0.

2. The record is treated as an asynchronous record. Completion occurs when the new
access configuration has been initialized or a time-out occurs. If initialization fails the
record is placed into alarm with a severity determined by BRSV.

Record Type
Description

Each field of each record type has an associated access security level of ASL0 or ASL1. See the
chapter “Database Definition” for details.

Example: Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access
to most level 0 fields only if the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to
most level 0 fields anytime.

4. The operations supervisor, linac supervisor, and the application developers can have
write access to all fields but must have some way of not changing something
inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed
under tighter control. These will follow rules 1 and 4 but not 2 or 3.

6. IOC channel access clients always have level 1 write privilege.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 57

Chapter 5: Access Security
User’s Guide
Most Linac IOC records will not have the ASG field defined and will thus be placed in ASG
“DEFAULT". The following records will have an ASG defined:

• LI:OPSTATE and any other records that need tighter control have ASG="critical".
One such record could be a subroutine record used to cause a new access configuration
file to be loaded. LI_OPSTATE has the value (0,1) if the Linac is (not operational,
operational).

• LI:lev1permit has ASG="permit". In order for the opSup, linacSup, or an
appDev to have write privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc)
{ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC(”A=1”)

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)
CALC(”A=0”)

}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
 UAG(opSup,linacSup,appDev)

 }
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
58 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Design Summary
RULE(1,WRITE) {
UAG(opSup,linacSup,appdev)
CALC("B=1")

}
 RULE(1,READ)

RULE(1,WRITE) {
HAG(ioc)

}
}

 Design Summary

Summary of
Functional
Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

Additional
Requirements

Performance Although the functional requirements doesn’t mention it, a fundamental goal is performance.
The design provides almost no overhead during normal database access and moderate
overhead for the following: channel access client/server connection, ioc initialization, a change
in value of a process variable referenced by an access calculation, and dynamically changing a
records access control group. Dynamically changing the user access groups, host access
groups, or the rules, however, can be a time consuming operation. This is done, however, by a
low priority IOC task and thus does not impact normal ioc operation.

Generic
Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded
tightly in database or channel access.

No Access Security
within an IOC

Within an IOC no access security is invoked. This means that database links and local channel
access clients calls are not subject to access control. Also test routines such as dbgf should not
be subject to access control.

Defaults It must be possible to easily define default access rules.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 59

Chapter 5: Access Security
Design Summary
Access Security is
Optional

When an IOC is initialized, access security is optional.

Design Overview The implementation provides a library of routines for accessing the security system. This
library has no knowledge of channel access or IOC databases, i.e. it is generic. Database
access, which is responsible for protecting an IOC database, calls library routines to add each
IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access
interact with it.

Configuration File User access groups, host access groups, and access security groups are configured via an
ASCII file.

Access Security
Library

The access security library consists of the following groups of routines: initialization, group
manipulation, client manipulation, access computation, and diagnostic. The initialization
routine reads a configuration file and creates a memory resident access control database. The
group manipulation routines allow members to be added and removed from access groups. The
client routines provide services for clients attached to members.

IOC Database Access
Security

The interface between an IOC database and the access security system.

Channel Access
Security

Whenever the Channel Access broadcast server receives a ca_search request and finds the
process variable, it calls asAddClient. Whenever it disconnects it calls
asRemoveClient. Whenever it issues a get or put to the database it must call asCheckGet
or asCheckPut.

Channel access is responsible for implementing the requirement of allowing the user to be
changed dynamically.

Comments It is likely that the access rules will be defined such that many IOCs will attach to a common
process variable. As a result the IOC containing the PV will have many CA clients.

What about password protection and encryption? I maintain that this is a problem to be solved
in a level above the access security described in this document. This is the issue of protecting
against the sophisticated saboteur.

Performance and
Memory
Requirements

Performance has not yet been measured but during the tests to measure memory usage no
noticeable change in performance during ioc initialization or during Channel Access clients
connection was noticed. Unless access privilege is violated the overhead during channel access
gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performs ca_puts on each of the
5000 channels. Each time it begins a new set of puts the value increments by 1.

3. A channel access client (caget) was created that has monitors on each of the 5000
channels.
60 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface
The memory consumption was measured before iocInit, after iocInit, after caput
connected to all channels, and after caget connected to all 5000 channels. This was done for
APS release 3.11.5 (before access security) and the first version which included access
security. The results were:

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the
memory usage before iocInit resulted from storage for records. The increase since R3.11.5
results from added fields to dbCommon. Fields were added for access security, synchronous
time support and for the new caching put support. The other increases in memory usage result
from the control blocks needed to support access control. The entire design was based on
maximum performance. This resulted in increased memory usage.

 Access Security Application Programmer’s Interface

Definitions typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
 asClientCOAR/*Change of access rights*/
 /*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

Initialization long asInitialize(ASINPUTFUNPTR inputFunction)
long asInitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller
must provide a routine to provide input lines for asInitialize. asInitFile and
asInitFP do their own input and also perform macro substitutions.

The initilization routines can be called multiple times. If an access system already exists the
old definitions are removed and the new one initialized. Existing members are placed in the
new ASGs.

Group manipulation

add Member long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

R3.11.5 After
Before iocInit 4,244,520 4,860,840
After iocInit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 61

Chapter 5: Access Security
Access Security Application Programmer’s Interface
This routine adds a new member to ASG asgName. The calling routine must provide storage
for ASMEMBERPVT. Upon successful return *ppvt will be equal to the address of storage used
by the access control system. The access system keeps an orphan list for all asgNames not
defined in the access configuration.

The caller must provide permanent storage for asgName.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

remove Member long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it
returns an error status of S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

get Member Pvt void *asGetMemberPvt(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine
returns the value of the pointer.

This routine returns NULL if access security is not active

put Member Pvt long asPutMemberPvt(ASMEMBERPVT pvt,void *userPvt);

This routine is used to set the pointer returned by asGetMemberPvt.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

change Group long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);

This routine changes the group for an existing member. The access rights of all clients of the
member are recomputed.

The caller must provide permanent storage for newAsgName.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

 Client Manipulation

add Client long asAddClient(ASCLIENTPVT *ppvt,ASMEMBERPVT pvt,int asl,
 char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storage for
ASCLIENTPVT. ASMEMBERPVT is the value that was set by calling asAddMember. asl is
the access security level.

The caller must provide permanent storage for user and host.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.
62 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Security Application Programmer’s Interface
change Client long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the values asl, user, and host for an existing client.
Again the caller must provide permanent storage for user and host. It is permissible to use
the same user and host used in the call to asAddClient with different values.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

remove Client long asRemoveClient(ASCLIENTPVT *pvt);

This call removes a client.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

get Client Pvt void *asGetClientPvt(ASCLIENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine
returns the value of the pointer.

This routine returns NULL if access security is not active.

put Client Pvt void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returned by asGetClientPvt.

register Callback long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

This routine registers a callback that will be called whenever the access privilege of the client
changes.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

check Get long asCheckGet(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) get
access rights.

check Put long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) put
access rights

Access Computation

compute all Asg long asComputeAllAsg(void);

This routine calls asComputeAsg for each access security group.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 63

Chapter 5: Access Security
Access Security Application Programmer’s Interface
This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

compute Asg long asComputeAsg(ASG *pasg);

This routine calculates all CALC entries for the ASG and calls asCompute for each client of
each member of the specified access security group.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

compute access
rights

long asCompute(ASCLIENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by the
access library itself rather than use code.

This routine returns S_asLib_asNotActive without doing anything if access control is not
active.

Diagnostic

dump int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the
information obtained from the access security file is printed.

If verbose is TRUE then additional information is printed. The value of each INP is displayed.
The list of members belonging to each ASG and the clients belonging to each member are
displayed. If member callback is specified as an argument, then it is called for each member. If
client callback is specified, it is called for each access security client.

dump UAG int asDumpUag(char *uagname)

This routine displays the specified UAG or if uagname is NULL each UAG defined in the access
security database.

dump HAG int asDumpHag(char *hagname)

This routine displays the specified UAG or if uagname is NULL each UAG defined in the access
security database.

dump Rules int asDumpRules(char *asgname)

This routine displays the rules for the specified ASG or if asgname is NULL the rules for each
ASG defined in the access security database.

dump member int asDumpMem(char *asgname,
void (*memcallback)(ASMEMBERPVT),int clients)
64 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Database Access Security
This routine displays the member and, if clients is TRUE, client information for the specified
ASG or if asgname is NULL the member and client information for each ASG defined in the
access security database. It also calls memcallback for each member if this argument is not
NULL.

dump hash table int asDumpHash(void)

This shows the contents of the hash table used to locate UAGs and HAGs,

 Database Access Security

Access Level
definition

The definition of access level means that a level is defined for each field of each record type.

1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a
field access_security _level. In addition definitions exist for the symbols: ASL0 and
ASL1.

2. Each field description in a record description contains a field with the value ASLx.

The meanings of the Access Security Level definitions are as follows:

• ASL0 Assigned to fields used during normal operation

• ASL1 Assigned to fields that may be sensitive to change. Permission to access this
level implies permission for ASL0.

Most record types assign ASL as follows: The fields VAL, RES (Reset), and CMD use the value
ASL0. All other fields use ASL1.

Access Security
Group definition

dbCommon contains the fields ASG and ASP. ASG (Access Security Group) is a character
string. The value can be assigned via a database configuration tool or else a utility could be
provided to assign values during ioc initialization. ASP is an access security private field. It
contains the address of an ASGMEMBER.

Access Client
Definition

Struct dbAddr contains a field asPvt, which contains the address of an ASGCLIENT. This
definition is also added to struct db_addr so that old database access also supports access
security.

Database Access
Library

Two files asDbLib.c and asCa.c implement the interface between IOC databases and access
control. It contains the following routines:

Initialization int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next call to asInit
uses this file. This routine must be called before iocInitotherwise access configuration is
disabled. Is access security is disabled during iocInit it will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int asInit()
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 65

Chapter 5: Access Security
Database Access Security
int asInitAsyn(ASDBCALLBACK *pcallback)

This routines call asInitialize. If the current access configuration file, as specified by
asSetFilename, is NULL then the routine just returns, otherwise the configuration file is
used to create the access configuration database.

This routine is called by iocInit. asInit can also be called at any time to change the
access configuration information.

asInitAsyn spawns a task asInitTask to perform the initialization. This allows
asInitAsyn to be called from a subroutine called by the process entry of a subroutine
record. asInitTask calls taskwdInsert so that if it suspends for some reason taskwd
can detect the failure. After initialization all records in the database are made members of the
appropriate access control group.

If the caller provides an ASDBCALLBACK then when either initialization completes or taskwd
detects a failure the users callback routine is called via one of the standard callback tasks.

asInitAsyn will return a value of -1 if access initialization is already active. It returns 0 if
asInitTask is successfully spawned.

Routines used by
Channel Access
Server

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument
is defined as a void* so that both old and new database access can be used.

ASMEMBERPVT asDbGetMemberPvt(void *paddr)

Get ASMEMBERPVT for the field referenced by a database access structure. The argument is
defined as a void* so that both old and new database access can be used.

Routine to test
asAddClient

int astac(char *pname,char *user,char *host)

This is a routine to test asAddClient. It simulates the calls that are made by Channel
Access.

Subroutines attached
to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new
access configuration database.

long asSubInit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the
record, asSubProcess calls asInit. If asInit returns success, it returns with
asynchronously. When asInitTask calls the completion routine supplied by
asSubProcess, the return status is used to place the record in alarm.

Diagnostic Routines These routines provide interfaces to the asDump routines described in the previous chapter.
They do NOT lock before calling the associated routine. Thus they may fail if the access
security configuration is changing while they are running. However the danger of the user
accidently aborting a command and leaving the access security system locked is considered a
risk that should be avoided.

asdbdump(void)
66 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Channel Access Security
This routine calls asDump with a member callback and with verbose TRUE.

aspuag(char *uagname)

This routine calls asDumpUag.

asphag(char *hagname)

This routine calls asDumpHag.

asprules(char *asgname)

This routine calls asDumpRules.

aspmem(char *asgname,int clients)

This routine calls asDumpMem.

 Channel Access Security

EPICS Access Security is designed to protect Input Output Controllers (IOCs) from
unauthorized access via the Channel Access (CA) network transparent communication
software system. This chapter describes the interaction between the CA server and the Access
Security system. It also briefly describes how the current access rights state is communicated
to clients of the EPICS control system via the CA communication system and the CA client
interface.

CA Server Interfaces
to the Access
Security System

The CA server calls asAddClient() and asRegisterClientCallback() for each
of the channels that a client connects to the server. The routine asRemoveClient() is
called whenever the client clears (removes) a channel or when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these
strings are supplied to the server when the client connects and can be updated at any time by
the client. When these strings change then asChangeClient() is called for each of the
channels maintained by the server for the client.

The server checks for read access when processing gets and for write access when processing
puts. If access is denied then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback
(monitor) for the client. If there is read access the server always sends an initial update
indicating the current value. If there isn’t read access the server sends one update indicating no
read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback
registered with asRegisterClientCallback(). When a channel’s access rights change
the server communicates the current state to the client library. If read access to a channel is lost
and there are events (monitors) registered on the channel then the server sends an update to the
client for each of them indicating no access and disables future updates for each event. If read
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 67

Chapter 5: Access Security
Access Control: Implementation Overview
access is reestablished to a channel and there are events (monitors) registered on the channel
then the server re-enables updates and sends an initial update message to the client for each of
them.

Client Interfaces Additional details on the channel access client side callable interfaces to access security can be
obtained from the “Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel
that it has established. The client library receives asynchronous updates of the current access
rights state from the server. It uses this state to check for read access when processing gets and
for write access when processing puts. If a program issues a channel access request that is
inconsistent with the client library’s current knowledge of the access rights state then access is
denied and an error code is returned to the application. The current access rights state as known
by the client library can be tested by an applications program with the C macros
ca_read_access() and ca_write_access().

An application program can also receive asynchronous notification of changes to the access
rights state by registering a function to be called back when the client library updates its
storage of the access rights state. The application’s call back function is installed for this
purpose by calling ca_replace_access_rights_event().

If the access rights state changes in the server after a request is queued in the client library but
before the request is processed by the server then it is possible that the request will fail in the
server. Under these circumstances then an exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is initially
registered. If there isn’t read access then the status in the arguments to the application
program’s event call back function indicates no read access and the value in the arguments to
the clients event call back is set to zero. If the read access right changes after the event is
initially registered then another update is supplied to the application programs call back
function.

 Access Control: Implementation Overview

This chapter provides a few aids for reading the access security code. Include file asLib.h
describes the control blocks used by the access security library.

Implementation
Overview

The following files form the access security system:

• asLib.h Definitions for the portion of access security that is independent of IOC
databases.

• asDbLib.h Definitions for access routines that interface to an IOC database.

• asLib_lex.l Lex and Yacc (actually EPICS flex and antelope) are used to parse
the access configuration file. This is the lex input file.

• asLib.y This is the yacc input file. Note that it includes asLibRoutines.c, which
do most of the work.

• asLibRoutines.c These are the routines that implement access security. This code has
no knowledge of the database or channel access. It is a general purpose access security
implementation.

• asDbLib.c This contains the code for interfacing access security to the IOC database.
68 EPICS IOC Application Developer’s Guide

Chapter 5: Access Security
Access Control: Implementation Overview
• asCa.c This code contains the channel access client code that implements the INP and
CALC definitions in an access security database.

• ascheck.c The Unix program which performs a syntax check on a configuration file.

Locking Because it is possible for multiple tasks to simultaneously modify the access security database
it is necessary to provide locking. Rather than try to provide low level locking, the entire access
security database is locked during critical operations. The only things this should hold up are
access initialization, CA searches, CA clears, and diagnostic routines. It should NEVER cause
record processing to wait. In addition CA gets and puts should never be delayed. One
exception exists. If the ASG field of a record is changed then asChangeGroup is called
which locks.

All operations invoked from outside the access security library that cause changes to the
internal structures of the access security database.routines lock.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 69

Chapter 5: Access Security
Structures
 Structures

ASBASE
 uagList
 hagList
 asgList
 phash

ASG
 node
 name
 inpList
 ruleList
 memberList
 pavalue
 inpBad
 inpChanged

UAG
 node
 name
 list

HAG
 node
 name
 list

UAGNAME
 node
 user

HAGNAME
 node
 host

ASGINP
 node
 inp
 capvt
 pasg

inpIndex

ASGRULE
 node
 access
 level
 inpUsed
 result
 calc
 rpcl
 uaglist
 hagList

ASGHAG
 node
 phag

ASGUAG
 node
 puag

ASGCLIENT
 node

pasgMember
 user
 host
 userPvt
 pcallback
 level
 access

ASGMEMBER
 node
 pasg
 clientList
 asgName
 userPvt
70 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
 Overview

This chapter describes a number of IOC test routines that are of interest to both application
developers and system developers. All routines can be executed from the vxWorks shell. The
parentheses are optional, but the arguments must be separated by commas. All character string
arguments must be enclosed in “”.

The user should also be aware of the field TPRO, which is present in every database record. If it
is set TRUE then a message is printed each time its record is processed and a message is printed
for each record processed as a result of it being processed.

 Database List, Get, Put

dbl Database List:

dbl (“<record type>”,”<filename>”)

Examples

dbl
dbl “ai”

This command prints the names of records in the run time database. If <record type> is
not specified, all records are listed. If <record type> is specified, then only the names of
the records of that type are listed.

If <filename> is specified the output is written to the specified file (if the file already exists
it is overwritten). If this argument is 0 then the output is sent to stdout.

dbgrep List Record Names That Match a Pattern:

dbgrep (“<pattern>”)

Examples

dbgrep “S0*”
dbgrep “*gpibAi*”

Lists all record names that match a pattern. The pattern can contain any characters that are
legal in record names as well as “*”, which matches 0 or more characters.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 71

Chapter 6: IOC Test Facilities
Database List, Get, Put
dba Database Address:

dba (“<record_name.field_name>”)

Example

dba “aitest”
dba “aitest.VAL”

This command calls dbNameToAddr and then prints the value of each field in the dbAddr
structure describing the field. If the field name is not specified then VAL is assumed (the two
examples above are equivalent).

dbgf Get Field:

dbgf (“<record_name.field_name>”)

Example:

dbgf “aitest”
dbgf “aitest.VAL”

This performs a dbNameToAddr and then a dbGetField. It prints the field type and value.
If the field name is not specified then VAL is assumed (the two examples above are equivalent).

dbpf Put Field:

dbpf (“<record_name.field_name>”,”<value>”)

Example:

dbpf “aitest”,”5.0”

This command performs a dbNameToAddr followed by a dbPutField and dbgf. If
<field_name> is not specified VAL is assumed.

dbpr Print Record:

dbpr (“<record_name>”,<interest level>)

Example

dbpr “aitest”,2

This command prints all fields of the specified record up to and including those with the
indicated interest level. Interest level has one of the following values:

• 0: Fields of interest to an Application developer and that can be changed as a result of
record processing.

• 1: Fields of interest to an Application developer and that do not change during record
processing.

• 2: Fields of major interest to a System developer.

• 3: Fields of minor interest to a System developer.

• 4: Fields of no interest.

 dbtr Test Record:

dbtr (“<record_name>”)

This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose
is to test record processing.
72 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Breakpoints
dbnr Print number of records:

dbnr(all_recordtypes)

This command displays the number of records of each type and the total number of records. If
all_record_types is 0 then only record types with record instances are displayed. If
all_record_types is not 0 then all record types are displayed.

 Breakpoints

A breakpoint facility that allows the user to step through database processing on a per lockset
basis. This facility has been constructed in such a way that the execution of all locksets other
than ones with breakpoints will not be interrupted. This was done by executing the records in
the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing
breakpoints. A record that is processed through external means, e.g.: a scan task, is called an
entrypoint into that lockset. The dbstat command described below will list all detected
entrypoints to a lockset, and at what rate they have been detected.

dbb Set Breakpoint:

dbb (“<record_name>”)

Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint
continuation task (one per lockset). Further record execution in this lockset is run within this
task’s context. This task will automatically quit if two conditions are met, all breakpoints have
been removed from records within the lockset, and all breakpoints within the lockset have been
continued.

dbd Remove Breakpoint:

dbd (”<record_name>”)

Removes a breakpoint from a record.

dbs Single Step:

dbs (“<record_name>”)

Steps through execution of records within a lockset. If this command is called without an
argument, it will automatically step starting with the last detected breakpoint.

dbc Continue:

dbc (“<record_name>”)

Continues execution until another breakpoint is found. This command may also be called
without an argument.

dbp Print Fields Of Suspended Record:

dbp

Prints out the fields of the last record whose execution was suspended.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 73

Chapter 6: IOC Test Facilities
Error Logging
dbap Auto Print:

dbap (“<record_name>”)

Toggles the automatic record printing feature. If this feature is enabled for a given record, it
will automatically be printed after the record is processed.

dbstat Status:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the
records with breakpoints set, what records have the autoprint feature set (by dbap), and what
entrypoints have been detected. It also displays the vxWorks task ID of the breakpoint
continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
 Entrypoint: so#C: 00001 C/S: 0.1
 Breakpoint: so(ap)
LSet: 00008#B: 00001 T: 0x22fee4c
 Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at record
“so.” The other is not currently stopped, but contains a breakpoint at record “output.”
“LSet:” is the lockset number that is being considered. “#B:” is the number of breakpoints set
in records within that lockset. “T:” is the vxWorks task ID of the continuation task. “C:” is the
total number of calls to the entrypoint that have been detected. “C/S:” is the number of those
calls that have been detected per second. (ap) indicates that the autoprint feature has been
turned on for record “so.”

 Error Logging

eltc Display error log messages on console:

eltc(int noYes)

This determines if error messages are displayed on vxWorks console. A value of 0 means no
and any other value means yes.

 Hardware Reports

dbior I/O Report:

dbior (“<driver_name>”,<interest level>)

This command calls the report entry of the indicated driver. If <driver_name> is not
specified then the report for all drivers is generated. It also calls the report entry of all device
support modules. Interest level is one of the following:

• 0: Print a short report for each module.
74 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Scan Reports
• 1: Print additional information.

• 2: Print even more info. The user may be prompted for options.

dbhcr Hardware Configuration Report:

dbhcr("filename")

This command produces a report of all hardware links. To use it on the IOC, issue the
command:

dbhcr > report
 or

dbhcr("report")

The report will probably not be in the sort order desired. The Unix command:

sort report > report.sort

should produce the sort order you desire.

 Scan Reports

scanppl Print Periodic Lists:

scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specidied rate. If rate is 0.0
all period lists are shown.

scanpel Print Event Lists:

scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunber. If
event_number is 0 all event scan lists are shown.

scanpiol Print I/O Event Lists:

scanpiol

This routine prints a list of all records in the I/O event scan lists.

 Time Server Report

TSreport Format:

TSreport

This routine prints out information about the Time server. This includes:

• Slave or Master

• Soft or Hardware synchronized
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 75

Chapter 6: IOC Test Facilities
Access Security Commands
• Clock and Sync rates

• etc.

 Access Security Commands

asSetFilename Format:

asSetFilename (“<filename>”)

This command defines a new access security file.

asInit Format:

asInit

This command reinitializes the access security system. It rereads the access security file in
order to create the new access security database. This command is useful either because the
asSetFilename command was used to change the file or because the file itself was
modified. Note that it is also possible to reinitialize the access security via a subroutine record.
See the access security document for details.

asdbdump Format:

asdbdump

This provides a complete dump of the access security database.

aspuag Format:

aspuag (“<user access group>”)

Print the members of the user access group. If no user access group is specified then the
members of all user access groups are displayed.

asphag Format:

asphag (“<host access group>”)

Print the members of the host access group. If no host access group is specified then the
members of all host access groups are displayed.

asprules Format:

asprules (“<access security group>”)

Print the rules for the specified access security group or if no group is specified for all groups.

aspmem Format:

aspmem (“<access security group>”, <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if
no group is specified. If <print clients> is (0, 1) then Channel Access clients attached to
each member (are not, are) shown.
76 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Channel Access Reports
 Channel Access Reports

ca_channel_status Format:

ca_channel_status (taskid)

Prints status for each channel in use by specialized vxWorks task.

casr Channel Access Server Report

casr(level)

Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each client
attached. The summary lines contain the client’s login name, client’s host name,
client’s protocol version number, and the number of channel created within the
server by the client.

1
Level one provides all information in level 0 and adds the task id used by the
server for each client, the client’s IP protocol type, the file number used by the
server for the client, the number of seconds elapsed since the last request was
received from the client, the number of seconds elapsed since the last response
was sent to the client, the number of unprocessed request bytes from the client,
the number of response bytes which have not been flushed to the client, the
client’s IP address, the client’s port number, and the client’s state.

2
Level two provides all information in levels 0 and 1 and adds the number of bytes
allocated by each client and a list of channel names used by each client. Level 2
also provides information about the number of bytes in the server’s free memory
pool, the distribution of entries in the server’s resource hash table, and the list of
IP addresses to which the server is sending beacons. The channel names are
shown in the form:

<name>(nrw)

where
n is number of ca_add_events the client has on this channel
r is (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

dbel Format:

dbel (“<record_name>”)

This routine prints the Channel Access event list for the specified record.

dbcar Database to Channel Access Report - See “Record Link Reports”
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 77

Chapter 6: IOC Test Facilities
Interrupt Vectors
 Interrupt Vectors

veclist Format:

veclist

Print Interrupt Vector List

 EPICS

epicsPrtEnvParams Format:

epicsPrtEnvParams

Print Environment Variables

epicsRelease Format:

coreRelease

Print release of iocCore.

 Database System Test Routines

These routines are normally only of interest to EPICS system developers NOT to Application
Developers.

dbt Measure Time To Process A Record:

dbt (“<record_name”)

Times the execution of 100 successive processings of record record_name. Note that
process passive and forward links within this record may incur the processing of other records
in its lockset. This function is a wrapper around the VxWorks timexN() function, and
directly displays its output. Therefore one must divide the result by 100 to get the execution
time for one processing of record_name.

dbtgf Test Get Field:

dbtgf (“<record_name.field_name>”)

Example:

dbtgf “aitest”
dbtgf “aitest.VAL”
78 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Record Link Routines
This performs a dbNameToAddr and then calls dbGetField with all possible request types
and options. It prints the results of each call. This routine is of most interest to system
developers for testing database access.

dbtpf Test Put Field:

dbtpf (“<record_name.field_name>”,”<value>”)

Example:

dbtpf “aitest”,”5.0”

This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for
each possible request type. This routine is of interest to system developers for testing database
access.

dbtpn Test Put Notify:

dbtpn (“<record_name.field_name>”,”<value>”)

Example:

dbtpn “aitest”,”5.0”

This command performs a dbNameToAddr, then calls dbPutNotify and has a callback
routine that prints a message when it is called. This routine is of interest to system developers
for testing database access.

 Record Link Routines

dblsr Lock Set Report:

dblsr(recordname,level)

This command generates a report showing the lock set to which each record belongs. If
recordname is 0 all records are shown, otherwise only records in the same lock set as
recordname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

dbcar Database to channel access report

dbcar(recordname,level)

This command generates a report showing database channel access links. If recordname is 0
then information about all records is shown otherwise only information about the specified
record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 79

Chapter 6: IOC Test Facilities
Old Database Access Testing
dbhcr Report hardware links. See “Hardware Reports”.

 Old Database Access Testing

These routines are of interest to EPICS system developers. They are used to test the old
database access interface, which is still used by Channel Access.

gft Get Field Test:

gft (“<record_name.field_name>”)

Example:

gft “aitest”
gft “aitest.VAL”

This performs a db_name_to_addr and then calls db_get_field with all possible
request types. It prints the results of each call. This routine is of interest to system developers
for testing database access.

pft Put Field Test:

pft (“<record_name.field_name>”,”<value>”)

Example:

pft “aitest”,”5.0”

This command performs a db_name_to_addr, db_put_field, db_get_field and
prints the result for each possible request type. This routine is of interest to system developers
for testing database access.

tpn Test Put Notify:

tpn (“<record_name.field_name>”,”<value>”)

Example:

tpn “aitest”,”5.0”

This routine tests dbPutNotify via the old database access interface.

 Routines to dump database information

dbDumpPath Dump Path:

dbDumpPath(pdbbase)

 dbDumpPath(pdbbase)

The current path for database includes is displayed.
80 EPICS IOC Application Developer’s Guide

Chapter 6: IOC Test Facilities
Routines to dump database information
dbDumpMenu Dump Menu:

dbDumpMenu(pdbbase,”<menu>”)

 dbDumpMenu(pdbbase,”menuScan”)

If the second argument is 0 then all menus are displayed.

dbDumpRecordTypeDump Record Description:

dbDumpRecordType(pdbbase,”<record type>”)

 dbDumpRecordType(pdbbase,”ai”)

If the second argument is 0 then all descriptions of all records are displayed.

dbDumpFldDes Dump Field Description:

dbDumpFldDes(pdbbase,”<record type>”,”<field name>”)

 dbDumpFldDes(pdbbase,”ai”,”VAL”)

If the second argument is 0 then the field descriptions of all records are displayed. If the third
argument is 0 then the description of all fields are displayed.

dbDumpDevice Dump Device Support:

dbDumpDevice(pdbbase,”<record type>”)

 dbDumpDevice(pdbbase,”ai”)

If the second argument is 0 then the device support for all record types is displayed.

dbDumpDriver Dump Driver Support:

dbDumpDriver(pdbbase)

 dbDumpDriver(pdbbase)

dbDumpRecords Dump Record Instances:

dbDumpRecords(pdbbase,”<record type>”,level)

 dbDumpRecords(pdbbase,”ai”)

If the second argument is 0 then the record instances for all record types is displayed. The third
argument determines which fields are displayed just like for the command dbpr.

dbDumpBreaktable Dump breakpoint table
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 81

Chapter 6: IOC Test Facilities
Routines to dump database information
dbDumpBreaktable(pdbbase,name)

 dbDumpBreaktable(pdbbase,”typeKdegF”)

This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are
dumped.

dbPvdDump Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

 dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process
variable directory. If verbose is not 0 then the command also displays the names which hash to
each hash table entry.
82 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
 Overview

Errors detected by an IOC can be divided into classes: Errors related to a particular client and
errors not attributable to a particular client. An example of the first type of error is an illegal
Channel Access request. For this type of error, a status value should be passed back to the
client. An example of the second type of error is a device driver detecting a hardware error.
This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

• In many cases it is not possible for the routine detecting an error to decide which type of
error occurred.

• Normally, only the routine detecting the error knows how to generate a fully descriptive
error message. Thus, if a routine decides that the error belongs to a particular client and
merely returns an error status value, the ability to generate a fully descriptive error
message is lost.

• If a routine always generates fully descriptive error messages then a particular client
could cause error message storms.

• While developing a new application the programmer normally prefers fully descriptive
error messages. For a production system, however, the system wide error handler should
not normally receive error messages cause by a particular client.

If used properly, the error handling facilities described in this chapter can process both types of
errors.

This chapter describes the following:

• Error Message Generation Routines - Routines which pass messages to the errlog Task.

• errlog Task - A task that displays error messages on the target console and also passes
the messages to all registered system wide error logger.

• status codes - EPICS status codes.

• iocLog- A system wide error logger supplied with base. It writes all messages to a
system wide file.

NOTE: recGbl error routines are also provided. They in turn call one of the error message
routines.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 83

Chapter 7: IOC Error Logging
Error Message Routines
 Error Message Routines

Basic Routines int errlogPrintf(const char *pformat, ...);
 int errlogVprintf(const char *pformat,va_list pvar);

 int errlogMessage(const char *message);

errlogPrintf and errlogVprintf are like printf and vprintf provided by the
standard C library, except that the output is sent to the errlog task. Consult any book that
describes the standard C library such as "The C Programming Language ANSI C Edition" by
Kernighan and Ritchie.

errlogMessage sends message to the errlog task

Log with Severity typedef enum {
 errlogInfo,errlogMinor,errlogMajor,errlogFatal
 }errlogSevEnum;

 int errlogSevPrintf(const errlogSevEnum severity,
 const char *pformat, ...);
 int errlogSevVprintf(const errlogSevEnum severity,
 const char *pformat,va_list pvar);

 char *errlogGetSevEnumString(const errlogSevEnum severity);

 void errlogSetSevToLog(const errlogSevEnum severity);
 errlogSevEnum errlogGetSevToLog(void);

errlogSevPrintf and errlogSevVprintf are like errlogPrintf and
errlogVprintf except that they add the severity to the beginning of the message in the
form "sevr=<value>" where value is on of "info, minor, major, fatal". Also the message is
suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumString gets the string value of severity.

errlogSetSevToLog sets the severity to log. errlogGetSevToLog gets the current
severity to log.

Status Routines void errMessage(long status, char *message);

 void errPrintf(long status, const char *pFileName,
 int lineno, const char *pformat, ...);

Routine errMessage (actually a macro that calls errPrintf) has the following format:

void errMessage(long status, char *message);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values” above.
84 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
errlog Task
errMessage, via a call to errPrintf, prints the message, the status symbol and string
values, and the name of the task which invoked errMessage. It also prints the name of the
source file and the line number from which the call was issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems
provide routines built on top of errMessage which generate descriptive messages.

An IOC global variable errVerbose, defined as an external in errMdef.h, specifies
verbose messages. If errVerbose is TRUE then errMessage should be called whenever an
error is detected even if it is known that the error belongs to a specific client. If errVerbose
is FALSE then errMessage should be called only for errors that are not caused by a specific
client.

Routine errPrintf has the following format:

void errPrintf(long status, __FILE__, __LINE__,
char *fmtstring <arg1>, ...);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values”, above.

FILE and LINE are defined as:

• __FILE__ As shown or NULL if the file name and line number should not be printed.

• __LINE__ As shown

The remaining arguments are just like the arguments to the C printf routine. errVerbose
determines if the filename and line number are shown.

Obsolete Routines int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatibility.

 errlog Task

The error message routines can be called by any non-interrupt level code. These routines
merely pass the message to the errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by
the errlog task. The message queue uses a fixed block of memory to hold all messages. When
the message queue is full additional messages are rejected but a count of missed messages is
kept. The next time the message queue empties an extra message about the missed messages is
generated.

The maximum message size is 256 characters. If a message is longer, the message is truncated
and a message explaining that it was truncated is appended. There is a chance that long
messages corrupt memory. This only happens if client code is defective. Long messages most
likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just calls
fprintf or vfprintf instead of using a separate task and a message queue. Thus host messages are
NOT sent to a system wide error logger.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 85

Chapter 7: IOC Error Logging
Status Codes
Add and Remove
Log Listener

typedef void(*errlogListener) (const char *message);
 void errlogAddListener(errlogListener listener);
 void errlogRemoveListener(errlogListener listener);

These routines add/remove a callback that receives each error message. These routines are the
interface to the actual system wide error handlers.

target console
routines

int eltc(int yesno); /* error log to console (0 or 1) */
 int errlogInit(int bufsize);

eltc determines if errlog task writes message to the console. During error messages storms this
command can be used to suppress console messages. A argument of 0 suppresses the messages
and any other value lets the message go to the console.

errlogInit can be used to initialize the error logging system with a larger buffer. The default is
1280 bytes. An extra MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never
used. This is a small extra protection against long error messages.

 Status Codes

EPICS defined status values provide the following features:

• Whenever possible, IOC routines return a status value: (0, non-0) means (OK, ERROR).

• The include files for each IOC subsystem contain macros defining error status symbols
and strings.

• Routines are provided for run time access of the error status symbols and strings.

• A global variable errVerbose helps code decide if error messages should be
generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning
EPICS status values. No consensus was reached.

Whenever it makes sense, IOC routines return a long word status value encoded similar to the
vxWorks error status encoding. The most significant short word indicates the subsystem
module within which the error occurred. The low order short word is a subsystem status value.
In order that status values do not conflict with the vxWorks error status values all subsystem
numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For example
the define for the database access routines is:

#define M_dbAccess (501 << 16) \
/*Database Access Routines*/

Directory ”epics/share/epicsH” contains an include library for every IOC subsystem
that returns standard status values. The status values are encoded with lines of the following
format:

#define S_xxxxxxx value /*string value*/

For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \
/*Invalid Database Request*/
86 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Error Logging
iocLog
For example, when dbGetField detects a bad database request type, it executes the
statement:

return(S_dbAccessBadDBR);

The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }

 iocLog

This consists of two modules: iocLogServer and iocLogClient. The client code runs on each
ioc and listens for the messages generated by the errlog system. It also reports the messages
from vxWorks logMsg.

iocLogServer This runs on a host. It receives messages for all enabled iocLogClients in the local area
network. The messages are written to a file. Epics base provides a startup file "base/src/util/
rc2.logServer", which is a shell script to start the server. Consult this script for details.

iocLogClient This runs on each ioc. It is started by default when iocInit runs. The global variable
iocLogDisable can be used to enable/disable the messages from being sent to the server.
Setting this variable to (0,1) (enables,disables) the messages generation. If iocLogDisable is
set to 1 immediately after iocCore is loaded then iocLogClient will not even initialize itself.

Initialize Logging Initialize the logging system. This system traps all logMsg calls and sends a copy to a Unix
file. Note that this can be disabled by issuing the command iocLogDisable=1 before
issuing iocInit.

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a circular
ASCII file on a PC or UNIX workstation. Each entry in the log contains the IOC's DNS name,
the date and time when the message was received by the log server, and the text of the message
generated on the IOC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in
the log. Messages generated by the vxWorks function logMsg() are also placed in the log
(logMsg() can be safely called from interrupt level). Messages generated by printf() do not end
up in the log and are instead used primarily by diagnostic functions called from the vxWorks
shell.

To start a log server on a UNIX or PC workstation you must first set the following environment
variables and then run the executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular
file and writes new messages over old messages at the beginning of the file). If
the value is zero then there is no limit on the size of the log file.

EPICS_IOC_LOG_FILE_COMMAND
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 87

Chapter 7: IOC Error Logging
iocLog
A shell command string used to obtain the log file path name during initialization
and in response to SIGHUP. The new path name will replace any path name
supplied in EPICS_IOC_LOG_FILE_NAME.
Thus, if EPICS_IOC_LOG_FILE_NAME is
"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/"
the log server will be stored at "A/B/c.log"
If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior is
disabled. This feature was donated to the collaboration by KECK, and it is used
by them for switching to a new directory at a fixed time each day. This variable is
currently used only by the UNIX version of the log server.

EPICS_IOC_LOG_PORT
THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment
variable EPICS_IOC_LOG_INET to the IP address of the host that is running the log server
and EPICS_IOC_LOG_PORT to the TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/
CONFIG_SITE_ENV and $(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on
other host architectures.

Configuring a
Private Log Server

In a testing environment it is desirable to use a private log server. This can be done as follows:

• Add a putenv command to your IOC startup file. For example
ld < iocCore
putenv("EPICS_IOC_LOG_INET=xxx.xxx.xxx.xxx")

The inet address is for your host workstation.

• On you host start a version of the log server.
88 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
 Overview

The purpose of this chapter is to describe record support in sufficient detail such that a C
programmer can write new record support modules. Before attempting to write new support
modules, you should carefully study a few of the existing support modules. If an existing
support module is similar to the desired module most of the work will already be done.

From previous chapters, it should be clear that many things happen as a result of record
processing. The details of what happens are dependent on the record type. In order to allow
new record types and new device types without impacting the core IOC system, the concept of
record support and device support has been created. For each record type, a record support
module exists. It is responsible for all record specific details. In order to allow a record support
module to be independent of device specific details, the concept of device support has been
created.

A record support module consists of a standard set of routines that can be called by database
access routines. This set of routines implements record specific code. Each record type can
define a standard set of device support routines specific to that record type.

By far the most important record support routine is process, which dbProcess calls when
it wants to process a record. This routine is responsible for the details of record processing. In
many cases it calls a device support I/O routine. The next section gives an overview of what
must be done in order to process a record. Next is a description of the entry tables that must be
provided by record and device support modules. The remaining sections give example record
and device support modules and describe some global routines useful to record support
modules.

The record and device support modules are the only modules that are allowed to include the
record specific include files as defined in base/rec. Thus they are the only routines that
access record specific fields without going through database access.

 Overview of Record Processing

The most important record support routine is process. This routine determines what record
processing means. Before the record specific “process” routine is called, the following has
already been done:

• Decision to process a record.

• Check that record is not active, i.e. pact must be FALSE.

• Check that the record is not disabled.

The process routine, together with its associated device support, is responsible for the
following tasks:
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 89

Chapter 8: Record Support
Record Support and Device Support Entry Tables
• Set record active while it is being processed

• Perform I/O (with aid of device support)

• Check for record specific alarm conditions

• Raise database monitors

• Request processing of forward links

A complication of record processing is that some devices are intrinsically asynchronous. It is
NEVER permissible to wait for a slow device to complete. Asynchronous records perform the
following steps:

1. Initiate the I/O operation and set pact TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the I/O operation complete record processing

5. Set pact FALSE and return

The examples given below show how this can be done.

 Record Support and Device Support Entry Tables

Each record type has an associated set of record support routines. These routines are located
via the data structures defined in epics/share/epicsH/recSup.h. The concept of
record support routines isolates the iocCore software from the details of each record type.
Thus new records can be defined and supported without affecting the IOC core software.

Each record type also has zero or more sets of device support routines. Record types without
associated hardware, e.g. calculation records, normally do not have any associated device
support. Record types with associated hardware normally have a device support module for
each device type. The concept of device support isolates IOC core software and even record
support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the
same for every record type. These routines are located via a Record Support Entry Table
(RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
90 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;

};

Each record support module must define its RSET. The external name must be of the form:

<record_type>RSET

Any routines not needed for the particular record type should be initialized to the value NULL.
Look at the example below for details.

Device support routines are located via a Device Support Entry Table (DSET), which has the
following structure:

struct dset { /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/

};

Each device support module must define its associated DSET. The external name must be the
same as the name which appears in devSup.ascii.

Any record support module which has associated device support must also include definitions
for accessing its associated device support modules. The field”dset”, which is located in
dbCommon, contains the address of the DSET. It is given a value by iocInit.

 Example Record Support Module

This section contains the skeleton of a record support package. The record type is xxx and the
record has the following fields in addition to the dbCommon fields: VAL, PREC, EGU, HOPR,
LOPR, HIHI, LOLO, HIGH, LOW, HHSV, LLSV, HSV, LSV, HYST, ADEL, MDEL, LALM, ALST,
MLST. These fields will have the same meaning as they have for the ai record. Consult the
Record Reference manual for a description.

Declarations /* Create RSET - Record Support Entry Table*/
#define report NULL
#define initialize NULL
static long init_record();
static long process();
#define special NULL
#define get_value NULL
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();
static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 91

Chapter 8: Record Support
Example Record Support Module
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxRSET={
RSETNUMBER,
report,
initialize,
init_record,
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */

long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure,

success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;

}xxxdset;

/* forward declaration for internal routines*/
static void alarm(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the
associated Device Support Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name of xxxRSET. It defines the record support
routines supplied for this record type. Note that forward declarations are given for all routines
supported and a NULL declaration for any routine not supported.

The template for the DSET is declared for use by this module.

init_record static long init_record(void *precord, int pass)
{

xxxRecord*pxxx = (xxxRecord *)precord;
xxxdset *pdset;
long status;
92 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module
if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,”xxx: init_record”);
return(S_dev_noDSET);

}
/* must have read_xxx function defined */
if((pdset->number < 5) || (pdset->read_xxx == NULL)) {

recGblRecordError(S_dev_missingSup,pxxx,
”xxx: init_record”);

return(S_dev_missingSup);
}
if(pdset->init_record) {

if((status=(*pdset->init_record)(pxxx))) return(status);
}
return(0);

}

This routine, which is called by iocInit twice for each record of type xxx, checks to see if it
has a proper set of device support routines and, if present, calls the init_record entry of the
DSET.

During the first call to init_record (pass=0) only initializations relating to this record can
be performed. During the second call (pass=1) initializations that may refer to other records
can be performed. Note also that during the second pass, other records may refer to fields
within this record. A good example of where these rules are important is a waveform record.
The VAL field of a waveform record actually refers to an array. The waveform record support
module must allocate storage for the array. If another record has a database link referring to the
waveform VAL field then the storage must be allocated before the link is resolved. This is
accomplished by having the waveform record support allocate the array during the first pass
(pass=0) and having the link reference resolved during the second pass (pass=1).

process static long process(void *precord)
{

xxxRecord*pxxx = (xxxRecord *)precord;
 xxxdset *pdset = (xxxdset *)pxxx->dset;

long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”read_xxx”);
return(S_dev_missingSup);

}

/* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
 /* return if beginning of asynch processing*/
if(!pact && pxxx->pact) return(0);
pxxx->pact = TRUE;
recGblGetTimeStamp(pxxx);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 93

Chapter 8: Record Support
Example Record Support Module
/* check for alarms */
alarm(pxxx);
/* check event list */
monitor(pxxx);
/* process the forward scan link record */
recGblFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);

}

The record processing routines are the heart of the IOC software. The record specific process
routine is called by dbProcess whenever it decides that a record should be processed.
Process decides what record processing really means. The above is a good example of what
should be done. In addition to being called by dbProcess the process routine may also be
called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For
example, if read_xxx is an asynchronous routine, the following sequence of events will
occur:

• process is called with pact FALSE

• read_xxx is called. Since pact is FALSE it starts I/O, arranges callback, and sets
pact TRUE

• read_xxx returns

• because pact went from FALSE to TRUE process just returns

• Any new call to dbProcess is ignored because it finds pact TRUE

• Sometime later the callback occurs and process is called again.

• read_xxx is called. Since pact is TRUE it knows that it is a completion request.

• read_xxx returns

• process completes record processing

• pact is set FALSE

• process returns

At this point the record has been completely processed. The next time process is called
everything starts all over from the beginning.

Miscellaneous Utility
Routines

static long get_units(DBADDR *paddr, char *units)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
int fieldIndex = dbGetFieldIndex(paddr);

if(fieldIndex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
94 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Example Record Support Module
pgd->lower_disp_limit = pxxx->lopr;
} else recGblGetGraphicDouble(paddr,pgd);
return(0);

}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support package.
The functions that must be performed by the remaining routines are described in the next
section.

Alarm Processing static void alarm(xxxRecord *pxxx)
{

double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,llsv,hsv,lsv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->llsv;
hsv=pxxx->hsv; lsv=pxxx->lsv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
|| ((lalm==hihi) && (val >= hihi-hyst)))) {

if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
 pxxx->lalm = hihi;

return;
}
/* alarm condition lolo */
if (llsv && (val <= lolo
|| ((lalm==lolo) && (val <= lolo+hyst)))) {

if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->llsv))
pxxx->lalm = lolo;

return;
}
/* alarm condition high */
if (hsv && (val >= high
|| ((lalm==high) && (val >= high-hyst)))) {

if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;

return;
}
/* alarm condition low */
if (lsv && (val <= low
|| (lalm==low) && (val <= low+hyst)))) {

if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->lsv))
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 95

Chapter 8: Record Support
Example Record Support Module
pxxx->lalm = low;
return;

}
/*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val;
return;

}

This is a typical set of code for checking alarms conditions for an analog type record. The
actual set of code can be very record specific. Note also that other parts of the system can raise
alarms. The algorithm is to always maximize alarm severity, i.e. the highest severity
outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm
storms from occurring in the event that the current value is very near an alarm limit and noise
makes it continually cross the limit. It honors the hysteresis only when the value is going to a
lower alarm severity.

Raising Monitors static void monitor(xxxRecord *pxxx)
{

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {

/* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pxxx->mlst = pxxx->val;

}
/* check for archive change */
delta = pxxx->alst - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {

/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

}
/* send out monitors connected to the value field */
if (monitor_mask){

db_post_events(pxxx,&pxxx->val,monitor_mask);
}
return;

}

All record types should call recGblResetAlarms as shown. Note that nsta and nsev
will have the value 0 after this routine completes. This is necessary to ensure that alarm
checking starts fresh after processing completes. The code also takes care of raising alarm
96 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Record Support Routines
monitors when a record changes from an alarm state to the no alarm state. It is essential that
record support routines follow the above model or else alarm processing will not follow the
rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this
example.

db_post_events results in channel access issuing monitors for clients attached to the
record and field. The call is

int db_post_events(void *precord, void *pfield,
 unsigned int monitor_mask)

where:

precord - The address of the record
pfield - The address of the field
monitor_mask - A bit mask that can be any combinations of the following:

DBE_ALARM - A change of alarm state has occured. This is set by
recGblResetAlarms.
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT: The record support module is responsible for calling db_post_event for
any fields that change as a result of record processing. Also it should NOT call
db_post_event for fields that do not change.

 Record Support Routines

This section describes the routines defined in the RSET. Any routine that does not apply to a
specific record type must be declared NULL.

Generate Report of
Each Field in Record

report(void *precord); /* addr of record*/

This routine is not used by most record types. Any action is record type specific.

Initialize Record
Processing

init(void);

This routine is called once at IOC initialization time. Any action is record type specific. Most
record types do not need this routine.

Initialize Specific
Record

init_record(
void *precord, /* addr of record*/
int pass);

iocInit calls this routine twice (pass=0 and pass=1) for each database record of the type
handled by this routine. It must perform the following functions:

• Check and/or issue initialization calls for the associated device support routines.

• Perform any record type specific initialization.

• During the first pass it can only perform initializations that affect the record referenced
by precord.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 97

Chapter 8: Record Support
Record Support Routines
• During the second pass it can perform initializations that affect other records.

Process Record process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.

Special Processing special(
struct dbAddr *paddr,
int after);/*(FALSE,TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referred to by
dbAddr. Note that it is called twice. Once before any changes are made to the associated field
and once after. File special.h defines special types. This routine is only called for user
special fields, i.e. fields with SPC_xxx >= 100. A field is declared special in the ASCII record
definition file. New values should not by added to special.h, instead use SPC_MOD.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Value This routine is no longer used. It should be left as a NULL procedure in the record support
entry table.

Convert dbAddr
Definitions

cvt_dbaddr(struct dbAddr *paddr);

This routine is called by dbNameToAddr if the field has special set equal to SPC_DBADDR. A
typical use is when a field refers to an array. This routine can change any combination of the
dbAddr fields: no_elements, field_type, field_size, special, and dbr_type.
For example if the VAL field of a waveform record is passed to dbNameToAddr,
cvt_dbaddr would change dbAddr so that it refers to the actual array rather then VAL.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Array
Information

get_array_info(
struct dbAddr *paddr,
long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value of the
specified array. The offset field is meaningful if the array is actually a circular buffer.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Put Array
Information

put_array_info(
struct dbAddr *paddr,
long nNew);

This routine is called after new values have been placed in the specified array.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Units get_units(
struct dbAddr *paddr,
char *punits);
98 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Record Support Routines
This routine sets units equal to the engineering units for the field.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Precision get_precision(
struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to convert
the field value to an ASCII string. recGblGetPrec should be called for fields not directly
related to the value field.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Enumerated
String

get_enum_str(
struct dbAddr *paddr,
char *p);

This routine sets *p equal to the ASCII string for the field value. The field must have type
DBF_ENUM.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Strings for
Enumerated Field

get_enum_strs(
struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structure dbr_enumStrs.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Put Enumerated
String

put_enum_str(
struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the
string values associated with each enumerated value and if it finds a match sets the database
field equal to the index of the string which matched.

Look at the code for the bi or mbbi records for examples.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Graphic Double
Information

get_graphic_double(
struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structure dbr_grDouble.
recGblGetGraphicDouble should be called for fields not directly related to the value
field.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 99

Chapter 8: Record Support
Global Record Support Routines
The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Control Double
Information

get_control_double(
struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to all fields of structure dbr_ctrlDouble.
recGblGetControlDouble should be called for fields not directly related to the value
field.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

Get Alarm Double
Information

get_alarm_double(
struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structure dbr_alDouble.

The database access routine, dbGetFieldIndex can be used to determine which field is
being modified.

 Global Record Support Routines

A number of global record support routines are available. These routines are intended for use
by the record specific processing routines but can be called by any routine that wishes to use
their services.

The name of each of these routines begins with ”recGbl”.

Alarm Status and
Severity

Alarms may be raised in many different places during the course of record processing. The
algorithm is to maximize the alarm severity, i.e. the highest severity outstanding alarm is
raised. If more than one alarm of the same severity is found then the first one is reported. This
means that whenever a code fragment wants to raise an alarm, it does so only if the alarm
severity it will declare is greater then that already existing. Four fields (in database common)
are used to implement alarms: sevr, stat, nsev, and nsta. The first two are the status and
severity after the record is completely processed. The last two fields (nsta and nsev) are the
status and severity values to set during record processing. Two routines are used for handling
alarms. Whenever a routine wants to raise an alarm it calls recGblSetSevr. This routine
will only change nsta and nsev if it will result in the alarm severity being increased. At the
end of processing, the record support module must call recGblResetAlarms. This routine
sets stat=nsta, sevr=nsev, nsta=0, and nsev=0. If stat or sevr has changed value
since the last call it calls db_post_event for stat and sevr and returns a value of
DBE_ALARM. If no change occured it returns 0. Thus after calling recGblResetAlarms
everything is ready for raising alarms the next time the record is processed. The example
record support module presented above shows how these macros are used.

recGblSetSevr(
void *precord,
short nsta,
short nsevr);
100 EPICS IOC Application Developer’s Guide

Chapter 8: Record Support
Global Record Support Routines
Returns: (TRUE, FALSE) if (did, did not) change nsta and nsev.

unsigned short recGblResetAlarms(void *precord);

Returns: Initial value for monitor_mask

Alarm
Acknowledgment

Database common contains two additional alarm related fields: acks (Highest severity
unacknowledged alarm) and ackt (does transient alarm need to be acknowledged). These
field are handled by iocCore and recGblResetAlarms and are not the responsibility of
record support. These fields are intended for use by the alarm handler.

Generate Error:
Process Variable
Name, Caller,
Message

SUGGESTION: use epicsPrintf instead of this for new code.

recGblDbaddrError(
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, process variable name, calling routine.

Generate Error:
Status String,
Record Name, Caller

SUGGESTION: use epicsPrintf instead of this for new code.
recGblRecordError(

long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine.

Generate Error:
Record Name,
Caller, Record
Support Message

SUGGESTION: use epicsPrintf instead of this for new code.
recGblRecsupError(

long status,
struct dbAddr *paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/

This routine interfaces with the system wide error handling system to display the following
information: Status information, record name, calling routine, record support entry name.

Get Graphics
Double

recGblGetGraphicDouble(
struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by the get_graphic_double record support routine to obtain
graphics values for fields that it doesn’t know how to set.

Get Control Double recGblGetControlDouble(
struct dbAddr *paddr,
struct dbr_ctrlDouble *pcd);

This routine can be used by the get_control_double record support routine to obtain
control values for fields that it doesn’t know how to set.

Get Alarm Double recGblGetAlarmDouble(
struct dbAddr *paddr,
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 101

Chapter 8: Record Support
Global Record Support Routines
struct dbr_alDouble *pcd);

This routine can be used by the get_alarm_double record support routine to obtain control
values for fields that it doesn’t know how to set.

Get Precision recGblGetPrec(
struct dbAddr *paddr,
long *pprecision);

This routine can be used by the get_precision record support routine to obtain the
precision for fields that it doesn’t know how to set the precision.

Get Time Stamp recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record

Forward link recGblFwdLink(
void *precord);

This routine can be used by process to request processing of forward links.

Initialize Constant
Link

 int recGblInitConstantLink(
struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called by init_record (or by associated
device support) to initialize the field associated with a constant link. It returns(FALSE, TRUE)
if it (did not, did) modify the destination.
102 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
 Overview

In addition to a record support module, each record type can have an arbitrary number of
device support modules. The purpose of device support is to hide hardware specific details
from record processing routines. Thus support can be developed for a new device without
changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to
the hardware directly or how to call a device driver which interfaces to the hardware. Thus
device support routines are the interface between hardware specific fields in a database record
and device drivers or the hardware itself.

Database common contains two device related fields:

• dtyp: Device Type.

• dset: Address of Device Support Entry Table.

The field dtyp contains the index of the menu choice as defined by the device ASCII
definitions. iocInit uses this field and the device support structures defined in devSup.h to
initialize the field dset. Thus record support can locate its associated device support via the
dset field.

Device support modules can be divided into two basic classes: synchronous and asynchronous.
Synchronous device support is used for hardware that can be accessed without delays for I/O.
Many register based devices are synchronous devices. Other devices, for example all GPIB
devices, can only be accessed via I/O requests that may take large amounts of time to
complete. Such devices must have associated asynchronous device support. Asynchronous
device support makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous
device support is appropriate. If a device causes delays of greater than 100 microseconds then
asynchronous device support is appropriate. If the delay is between these values your guess
about what to do is as good as mine. Perhaps you should ask the hardware designer why such a
device was created.

If a device takes a long time to accept requests there is another option than asynchronous
device support. A driver can be created that periodically polls all its attached input devices.
The device support just returns the latest polled value. For outputs, device support just notifies
the driver that a new value must be written. the driver, during one of its polling phases, writes
the new value. The EPICS Allen Bradley device/driver support is a good example.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 103

Chapter 9: Device Support
Example Synchronous Device Support Module
 Example Synchronous Device Support Module

/* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

}devAiSoft={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

static long init_record(void *precord)
{

aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {

case (CONSTANT) :
recGblInitConstantLink(&pai->inp,

DBF_DOUBLE,&pai->val);
break;

case (PV_LINK) :
case (DB_LINK) :
case (CA_LINK) :

break;
default :

recGblRecordError(S_db_badField, (void *)pai,
”devAiSoft (init_record) Illegal INP field”);

return(S_db_badField);
}
/* Make sure record processing routine does not perform any

conversion*/
pai->linr=0;
return(0);

}

static long read_ai(void *precord)
{

aiRecord*pai =(aiRecord *)precord;
104 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
Example Asynchronous Device Support Module
long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);
return(2); /*don’t convert*/

}

The example is devAiSoft, which supports soft analog inputs. The INP field can be a
constant or a database link or a channel access link. Only two routines are provided (the rest
are declared NULL). The init_record routine first checks that the link type is valid. If the
link is a constant it initializes VAL If the link is a Process Variable link it calls dbCaGetLink
to turn it into a Channel Access link. The read_ai routine obtains an input value if the link is
a database or Channel Access link, otherwise it doesn’t have to do anything.

 Example Asynchronous Device Support Module

This example shows how to write an asynchronous device support routine. It does the
following sequence of operations:

1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to
be called after a number of seconds specified by the VAL field. callbackRequest is
an EPICS supplied routine. The watchdog timer routines are supplied by vxWorks.

2. It prints a message stating that processing has started, sets pact TRUE, and returns. The
record processing routine returns without completing processing.

3. When the specified time elapses myCallback is called. It locks the record, calls
process, and unlocks the record. It calls the process entry of the record support
module, which it locates via the rset field in dbCommon, directly rather than
dbProcess. dbProcess would not call process because pact is TRUE.

4. When process executes, it again calls read_ai. This time pact is TRUE.

5. read_ai prints a message stating that record processing is complete and returns a
status of 2. Normally a value of 0 would be returned. The value 2 tells the record
support routine not to attempt any conversions. This is a convention (a bad convention!)
used by the analog input record.

6. When read_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called
everything starts all over.

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiTestAsyn={
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 105

Chapter 9: Device Support
Example Asynchronous Device Support Module
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
typedef struct myCallback {

CALLBACK callback;
sruct dbCommon *precord;
WDOG_ID wd_id;

}myCallback;

static void myCallback(CALLBACK *pcallback)
{
 dbCommon *precord;
 struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

}

static long init_record(void *precord)
{
 aiRecord *pai = (aiRecord *)precord;
 myCallback *pcallback;

 /* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

”devAiTestAsyn (init_record) Illegal INP field”);
return(S_db_badField);

}
return(0);

}

106 EPICS IOC Application Developer’s Guide

Chapter 9: Device Support
Device Support Routines
static long read_ai(void *precord)
{

aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

if(pai->pact) {
printf(”%s Completed\n”,pai->name);
return(2); /* don‘t convert*/

} else {
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,&pcallback->callback);
printf(”%s Starting asynchronous processing\n”,

pai->name);
wdStart(pcallback->wd_id,wait_time,

(FUNCPTR)callbackRequest,
(int)&pcallback->callback);

pai->pact = TRUE;
return(0);

}
default :

if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat!=SOFT_ALARM) {

recGblRecordError(S_db_badField, (void *)pai,
”devAiTestAsyn (read_ai) Illegal INP field”);

}
}

}
return(0);

}

 Device Support Routines

This section describes the routines defined in the DSET. Any routine that does not apply to a
specific record type must be declared NULL.

Generate Device
Report

report(
FILE fp, /* file pointer*/
int interest);

This routine is responsible for reporting all I/O cards it has found. If interest is (0,1) then
generate a (short, long) report. If a device support module is using a driver, it normally does not
have to implement this routine because the driver generates the report.

Initialize Record
Processing

init(
int after);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 107

Chapter 9: Device Support
Device Support Routines
This routine is called twice at IOC initialization time. Any action is device specific. This
routine is called twice: once before any database records are initialized and once after all
records are initialized but before the scan tasks are started. after has the value (0,1) (before,
after) record initialization.

Initialize Specific
Record

init_record(
void *precord); /* addr of record*/

The record support init_record routine calls this routine.

Get I/O Interrupt
Information

get_ioint_info(
int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task. If cmd is (0,1) then this routine is being called
when the associated record is being (placed in, taken out of) an I/O scan list. See the chapter on
scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not
described in this document because, hopefully, it will go away in the near future. When it calls
this routine the arguments have completely different meanings.

Other Device
Support Routines

All other device support routines are record type specific.
108 EPICS IOC Application Developer’s Guide

Chapter 10: Driver Support
 Overview

It is not necessary to create a driver support module in order to interface EPICS to hardware.
For simple hardware device support is sufficient. At the present time most hardware support
has both. The reason for this is historical. Before EPICS there was GTACS. During the change
from GTACS to EPICS, record support was changed drastically. In order to preserve all
existing hardware support the GTACS drivers were used without change. The device support
layer was created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do I need
driver support and when don’t I? Lets give a few reasons why drivers should be created.

• The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for
accessing the subnet. There is no reason to make the driver aware of EPICS except
possibly for issuing error messages.

• The hardware is complicated. In this case supplying driver support helps modularized
the software. The Allen Bradley driver, which is also an example of supporting a subnet,
is a good example.

• An existing driver, maintained by others, is available. I don’t know of any examples.

• The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a
good example. It is used by other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module,
which can be layered on top of an existing driver, and provide a database definition for the
driver. The driver support module is described in the next section. The database definition is
described in chapter “Database Definition”.

 Device Drivers

Device drivers are modules that interface directly with the hardware. They are provided to
isolate device support routines from details of how to interface to the hardware. Device drivers
have no knowledge of the internals of database records. Thus there is no necessary
correspondence between record types and device drivers. For example the Allen Bradley driver
provides support for many different types of signals including analog inputs, analog outputs,
binary inputs, and binary outputs.

In general only device support routines know how to call device drivers. Since device support
varies widely from device to device, the set of routines provided by a device driver is almost
completely driver dependent. The only requirement is that routines report and initmust be
provided. Device support routines must, of course, know what routines are provided by a
driver.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 109

Chapter 10: Driver Support
Device Drivers
File drvSup.h describes the format of a driver support entry table. The driver support module
must supply a driver entry table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {

 long number;
 DRVSUPFUN report;
 DRVSUPFUN init;

} drvAb={
 2,
 report,
 init

};

The above example is for the Allen Bradley driver. It has an associated ascii definition of:

driver(drvAb)

Thus it is seen that the driver support module should supply two EPICS callable routines: int
and report.

init This routine, which has no arguments, is called by iocInit. The driver is expected to look
for and initialize the hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
{

 return(ab_driver_init());
}

report The report routine is called by the dbior, an IOC test routine. It is responsible for producing a
report describing the hardware it found at init time. It is passed one argument, level, which is a
hint about how much information to display. An example, taken from Allen Bradley, is:

LOCAL long report(int level)
{

 return(ab_io_report(level));
}

Guidelines for level are as follows:

Level=0 Display a one line summary for each device
Level=1 Display more information
Level=2 Display a lot of information. It is even permissible to

prompt for what is wanted.

Hardware
Configuration

Hardware configuration includes the following:

• VME/VXI address space

• VME Interrupt Vectors and levels

• Device Specific Information

The information contained in hardware links supplies some but not all configuration
information. In particular it does not define the VME/VXI addresses and interrupt vectors. This
additional information is what is meant by hardware configuration in this chapter.
110 EPICS IOC Application Developer’s Guide

Chapter 10: Driver Support
Device Drivers
The problem of defining hardware configuration information is an unsolved problem for
EPICS. At one time configuration information was defined in module_types.h Many
existing device/driver support modules still uses this method. It should NOT be used for any
new support for the following reasons:

• There is no way to manage this file for the entire EPICS community.

• It does not allow arbitrary configuration information.

• It is hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used
in each IOC makes the configuration problem much more manageable than previously.
Previously if you wanted to support a new VME modules it was necessary to pick addresses
that nothing in module_types.h was using. Now you only have to check modules you are
actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal
guidelines should be used:

• Never use #define to specify things like VME addresses. Instead use variables and
assign default values. Allow the default values to be changed before iocInit is executed.
The best way is to supply a global routine that can be invoked from the IOC startup file.
Note that all arguments to such routines should be one of the following:

int
char *
double

• Call the routines described in chapter “Device Support Library” whenever possible.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 111

Chapter 10: Driver Support
Device Drivers
112 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
 Overview

An IOC database is created on a Unix system via a Database Configuration Tool and stored in
a Unix file. EPICS provides two sets of database access routines: Static Database Access and
Runtime Database Access. Static database access can be used on Unix or IOC database files.
Runtime database requires an initialized IOC databases. Static database access is described in
this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity
is hidden. DBF_MENU and DBF_DEVICE fields are accessed via a common type called
DCT_MENU. A set of routines are provided to simplify access to link fields. All fields can be
accessed as character strings. This interface is called static database access because it can be
used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must
be read via dbReadDatabase or dbReadDatabaseFP. These routines, which are also
used to load record instances, can be called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static
database access interface. An IOC database is created on a Unix system via a database
configuration tool and stored in a Unix file with a file extension of ”.db”. Three routines
(dbReadDatabase, dbReadDatabaseFP and dbWriteRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS
database. All other access routines manipulate the memory resident database.

An include file dbStaticLib.h contains all the definitions needed to use the static database
access library. Two structures (DBBASE and DBENTRY) are used to access a database. The
fields in these structures should not be accessed directly. They are used by the static database
access library to keep state information for the caller.

 Definitions

DBBASE Multiple memory resident databases can be accessed simultaneously. The user must provide
definitions in the form:

DBBASE *pdbbase;

DBENTRY A typical declaration for a database entry structure is:

DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 113

Chapter 11: Static Database Access
Allocating and Freeing DBBASE
Most static access to a database is via a DBENTRY structure. As many DBENTRYs as desired
can be allocated.

The user should NEVER access the fields of DBENTRY directly. They are meant to be used by
the static database access library.

Most static access routines accept an argument which contains the address of a DBENTRY.
Each routine uses this structure to locate the information it needs and gives values to as many
fields in this structure as possible. All other fields are set to NULL.

Field Types Each database field has a type as defined in the next chapter. For static database access a new
and simpler set of field types are defined. In addition, at runtime, a database field can be an
array. With static database access, however, all fields are scalars. Static database access field
types are called DCT field types.

The DCT field types are:

• DCT_STRING: Character string.

• DCT_INTEGER: Integer value

• DCT_REAL: Floating point number

• DCT_MENU: A set of choice strings

• DCT_MENUFORM: A set of choice strings with associated form.

• DCT_INLINK: Input Link

• DCT_OUTLINK: Output Link

• DCT_FWDLINK: Forward Link

• DCT_NOACCESS: A private field for use by record access routines

A DCT_STRING field contains the address of a NULL terminated string. The field types
DCT_INTEGER and DCT_REAL are used for numeric fields. A field that has any of these types
can be accessed via the dbGetString, dbPutString, dbVerify, and dbGetRange
routines.

The field type DCT_MENU has an associated set of strings defining the choices. Routines are
available for accessing menu fields. A menu field can also be accessed via the dbGetString,
dbPutString, dbVerify, and dbGetRange routines.

The field type DCT_MENUFORM is like DCT_MENU but in addition the field has an associated
link field. The information for the link field can be entered via a set of form manipulation
fields.

DCT_INLINK (input), DCT_OUTLINK (output), and DCT_FWDLINK (forward) specify that
the field is a link, which has an associated set of static access routines described in the next
subsection. A field that has any of these types can also be accessed via the dbGetString,
dbPutString, dbVerify, and dbGetRange routines.

 Allocating and Freeing DBBASE

dbAllocBase DBBASE *dbAllocBase(void);

This routine allocates and initializes a DBBASE structure. It does not return if it is unable to
allocate storage.
114 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
DBENTRY Routines
dbAllocBase allocates and initializes a DBBASE structure. Normally an application does
not need to call dbAllocBase because a call to dbReadDatabase or
dbReadDatabaseFP automatically calls this routine if pdbbase is null. Thus the user only
has to supply code like the following:

DBBASE *pdbbase=0;
...
status = dbReadDatabase(&pdbbase,"sample.db",

"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases, each
referenced via a different (DBBASE *) pointer. Such applications may find it necessary to call
dbAllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

dbFreeBase void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database reference by pdbbase including the DBBASE
structure itself.

 DBENTRY Routines

Alloc/Free
DBENTRY

DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and free DBENTRY structures. The user can allocate and free
DBENTRY structures as necessary. Each DBENTRY is, however, tied to a particular database.

dbAllocEntry and dbFreeEntry act as a pair, i.e. the user calls dbAllocEntry to
create a new DBENTRY and calls dbFreeEntry when done.

dbInitEntry
dbFinishEntry

void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routines dbInitEntry and dbFinishEntry are provided in case the user wants to
allocate a DBENTRY structure on the stack. Note that the caller MUST call dbFinishEntry
before returning from the routine that calls dbInitEntry. An example of how to use these
routines is:

int xxx(DBBASE *pdbbase)
{

DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
...
dbInitEntry(pdbbase,pdbentry);
...
dbFinishEntry(pdbentry);

}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 115

Chapter 11: Static Database Access
Read and Write Database
dbCopyEntry
dbCopyEntry
Contents

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine dbCopyEntry allocates a new entry, via a call to dbAllocEntry, copies the
information from the original entry, and returns the result. The caller must free the entry, via
dbFreeEntry when finished with the DBENTRY.

The routine dbCopyEntryContents copies the contents of pfrom to pto. Code should
never perform structure copies.

 Read and Write Database

Read Database File long dbReadDatabase(DBBASE **ppdbbase,const char *filename,
char *path, char *substitutions);

long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,
char *path, char *substitutions);

long dbPath(DBBASE *pdbbase,const char *path);
long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase and dbReadDatabaseFP both read a file containing database
definitions as described in chapter “Database Definitions”. If *ppdbbase is NULL,
dbAllocBase is automatically invoked and the return address assigned to *pdbbase. The
only difference between the two routines is that one accepts a file name and the other a "FILE
*". Any combination of these routines can be called multiple times. Each adds definitions with
the rules described in chapter “Database Definitions”.

The routines dbPath and dbAddPath specify paths for use by include statements in
database definition files. These are not normally called by user code.

Write Database
Definitons

long dbWriteMenu(DBBASE *pdbbase,char *filename,
char *menuName);

long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,

char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,

char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,

const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);

Each of these routines writes files in the same format accepted by dbReadDatabase and
dbReadDatabaseFP. Two versions of each type are provided. The only difference is that one
accepts a filename and the other a "FILE *". Thus only one of each type has to be described.

dbWriteMenu writes the description of the specified menu or, if menuName is NULL, the
descriptions of all menus.
116 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Types
dbWriteRecordType writes the description of the specified record type or, if
recordTypeName is NULL, the descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

Write Record
Instances

long dbWriteRecord(DBBASE *pdbbase,char * file,
char *precordTypeName,int level);

long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,
char *precordTypeName,int level);

Each of these routines writes files in the same format accepted by dbReadDatabase and
dbReadDatabaseFP. Two versions of each type are provided. The only difference is that one
accepts a filename and the other a “FILE *”. Thus only one of each type has to be described.

dbWriteRecord writes record instances. If precordTypeName is NULL, then the record
instances for all record types are written, otherwise only the records for the specified type are
written. level has the following meaning:

• 0 - Write only prompt fields that are different than the default value.

• 1 - Write only the fields which are prompt fields.

• 2 - Write the values of all fields.

 Manipulating Record Types

Get Number of
Record Types

int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

Locate Record Type long dbFindRecordType(DBENTRY *pdbentry,
char *recordTypeName);

long dbFirstRecordType(DBENTRY *pdbentry);
long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record type. dbFirstRecordType locates the
first, in alphabetical order, record type. Given that DBENTRY points to a particular record
type, dbNextRecordType locates the next record type. Each routine returns 0 for success
and a non zero status value for failure. A typical code segment using these routines is:

status = dbFirstRecordType(pdbentry);
while(!status) {

/*Do something*/
status = dbNextRecordType(pdbentry)
}

Get Record Type
Name

char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This
routine should only be called after a successful call to dbFindRecordType,
dbFirstRecordType, or dbNextRecordType. It returns NULL if DBENTRY does not
point to a record description.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 117

Chapter 11: Static Database Access
Manipulating Field Descriptions
 Manipulating Field Descriptions

The routines described in this section all assume that DBENTRY references a record type, i.e.
that dbFindRecordType, dbFirstRecordType, or dbNextRecordType has returned
success or that a record instance has been successfully located.

Get Number of
Fields

int dbGetNFields(DBENTRY *pdbentry,int dctonly);

Returns the number of fields for the record instance that DBENTRY currently references.

Locate Field long dbFirstField(DBENTRY *pdbentry,int dctonly);
long dbNextField(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then
DBENTRY references that field description.

Get Field Type int dbGetFieldType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section on page 114, for a
description of the field types.

Get Field Name char *dbGetFieldName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It returns
NULL if DBENTRY does not point to a field.

Get Default Value char *dbGetDefault(DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It
returns NULL if DBENTRY does not point to a field or if the default value is NULL.

Get Field Prompt char *dbGetPrompt(DBENTRY *pdbentry);
int dbGetPromptGroup(DBENTRY *pdbentry);

The dbGetPrompt routine returns the character string prompt value, which describes the
field. dbGetPromptGroup returns the field group as described in guigroup.h.

 Manipulating Record Attributes

A record attribute is a "psuedo" field definition attached to a record type. If a attribute value is
assigned to a psuedo field name then all record instances of that record type appear to have that
field with the defined value. All attribute fields are DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the
record type name. VERS is initialized to the value "none specified" but can be changed by
record support.

dbPutRecord
Attribute

long dbPutRecordAttribute(DBENTRY *pdbentry,
 char *name,char*value)

This creates or modifies attribute name with value.
118 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Record Instances
dbGetRecord
Attribute

long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);

 Manipulating Record Instances

With the exception of dbFindRecord, each of the routines described in this section require that
DBENTRY references a valid record type, i.e. that dbFindRecordType,
dbFirstRecordType, or dbNextRecordType has been called and returned success.

Get Number of
Records

int dbGetNRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently
references.

Locate Record long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then
DBENTRY references the record. dbFindRecord can be called without DBENTRY
referencing a valid record type. dbFirstRecord only works if DBENTRY references a
record type. The dbDumpRecords example given at the beginning of this chapter shows how
these routines can be used.

dbFindRecord also calls dbFindField if the record name includes a field name, i.e. it
ends in “.XXX”. The routine dbFoundField returns (TRUE, FALSE) if the field (was, was
not) found. If it was not found, then dbFindFieldmust be called before individual fields can
be used.

Get Record Name char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called after dbFindRecord, dbFirstRecord, or
dbNextRecord has returned success.

Create/Delete/Free
Record

long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord, which assumes that DBENTRY references a valid record type, creates a
new record instance and initializes it as specified by the record description. If it returns
success, then DBENTRY references the record just created. dbDeleteRecord deletes a
single record instance/. dbFreeRecords deletes all record instances.

Copy Record long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName
int overWriteOK)

This routine copies the record instance currently referenced by DBENTRY. Thus it creates and
new record with the name newRecordName that is of the same type as the original record
and copies the original records field values to the new record. If newRecordName already
exists and overWriteOK is true, then the original newRecordName is deleted and
recreated. If dbCopyRecord completes successfully, DBENTRY references the new record.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 119

Chapter 11: Static Database Access
Manipulating Menu Fields
Rename Record long dbRenameRecord(DBENTRY *pdbentry, char *newname)

This routine renames the record instance currently referenced by DBENTRY. If
dbRenameRecord completes successfully, DBENTRY references the renamed record.

Record Visibility These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dbInvisibleRecord(DBENTRY *pdbentry);
int dbIsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be visible. dbInvisibleRecord sets a record
invisible. dbIsVisibleRecord returns TRUE if a record is visible and FALSE otherwise.

Find Field long dbFindField(DBENTRY *pdbentry,char *pfieldName);
int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been located, dbFindField finds the specified field. If it
returns success, then DBENTRY references that field. dbFoundField returns (FALSE,
TRUE) if (no field instance is currently available, a field instance is available).

Get/Put Field Values char *dbGetString(DBENTRY *pdbentry);
long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);
int dbIsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types
except DCT_NOACCESS but should NOT be used to prompt the user for information for
DCT_MENU, DCT_MENUFORM, or DCT_LINK_xxx fields. dbVerify returns (NULL, a
message) if the string is (valid, invalid). Please note that the strings returned are volatile, i.e.
the next call to a routines that returns a string will overwrite the value returned by a previous
call. Thus it is the caller’s responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFORM and DCT_LINK_xxx fields can be manipulated via routines
described in the following sections. If, however dbGetString and dbPutString are used,
they do work correctly. For these field types dbGetString and dbPutString are intended
to be used only for creating and restoring versions of a database.

 Manipulating Menu Fields

These routines should only be used for DCT_MENU and DCT_MENUFORM fields. Thus they
should only be called if dbFindField, dbFirstField, or dbNextField has returned
success and the field type is DCT_MENU or DCT_MENUFORM.

Get Number of
Menu Choices

int dbGetNMenuChoices(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

Get Menu Choice char **dbGetMenuChoices(DBENTRY *pdbentry);
120 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Manipulating Link Fields
This routine returns the address of an array of pointers to strings which contain the menu
choices.

Get/Put Menu int dbGetMenuIndex(DBENTRY *pdbentry);
long dbPutMenuIndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromIndex(DBENTRY *pdbentry,int index);
int dbGetMenuIndexFromString(DBENTRY *pdbentry,

char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenuIndex returns the index of the menu choice for the current field, i.e. it specifies
which choice to which the field is currently set. dbPutMenuIndex sets the field to the choice
specified by the index.

dbGetMenuStringFromIndex returns the string value for a menu index. If the index
value is invalid NULL is returned. dbGetMenuIndexFromString returns the index for
the given string. If the string is not a valid choice a -1 is returned.

Locate Menu dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine. This
routine just finds a menu with the given name.

 Manipulating Link Fields

Link Types Links are the most complicated types of fields. A link can be a constant, reference a field in
another record, or can refer to a hardware device. Two additional complications arise for
hardware links. The first is that field DTYP, which is a menu field, determines if the INP or
OUT field is a device link. The second is that the information that must be specified for a device
link is bus dependent. In order to shelter database configuration tools from these complications
the following is done for static database access.

• Static database access will treat DTYP as a DCT_MENUFORM field.

• The information for the link field related to the DCT_MENUFORM can be entered via a
set of form manipulation routines associated with the DCT_MENUFORM field. Thus the
link information can be entered via the DTYP field rather than the link field.

• The Form routines described in the next section can also be used with any link field.

Each link is one of the following types:

• DCT_LINK_CONSTANT: Constant value.

• DCT_LINK_PV: A process variable link.

• DCT_LINK_FORM: A link that can only be processed via the form routines described
in the next chapter.

Database configuration tools can change any link between being a constant and a process
variable link. Routines are provided to accomplish these tasks.

The routines dbGetString, dbPutString, and dbVerify can be used for link fields but
the form routines can be used to provide a friendlier user interface.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 121

Chapter 11: Static Database Access
Manipulating MenuForm Fields
All Link Fields int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulating DCT_xxxLINK fields. dbGetNLinks and
dbGetLinkField are used to walk through all the link fields of a record. dbGetLinkType
returns one of the values: DCT_LINK_CONSTANT, DCT_LINK_PV, DCT_LINK_FORM, or the
value -1 if it is called for an illegal field.

Constant and
Process Variable
Links

long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifying DCT_LINK_CONSTANT or DCT_LINK_PV
links. They should not be used for DCT_LINK_FORM links, which should be processed via the
associated DCT_MENUFORM field described above.

 Manipulating MenuForm Fields

These routines are used with a DCT_MENUFORM field (a DTYP field) to manipulate the
associated DCT_INLINK or DCT_OUTLINK field. They can also be used on any
DCT_INLINK, DCT_OUTLINK, or DCT_FWDLINK field.

Alloc/Free Form int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number
of elements in the form. If the current field value contains a macro definition, the number of
lines returned is 0.

Get/Put Form char **dbGetFormPrompt(DBENTRY *pdbentry)
char **dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)

dbGetFormPrompt returns a pointer to an array of pointers to character strings specifying
the prompt string. dbGetFormValue returns the current values. dbPutForm, which can use
the same array of values returned by dbGetForm, sets new values.

Verify Form char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returns NULL if no errors are present. If
errors are present, it returns a pointer to an array of character strings containing error
messages. Lines in error have a message and correct lines have a NULL string.

Get Related Field char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is
called for any other type of field it returns NULL.

Example The following is code showing use of these routines:

char **value;
char **prompt;
122 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Find Breakpoint Table
char **error;
int n;

...
n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {

printf(”%s (%s) : \n”,prompt[i],value[i]);
/*The follwing accepts input from stdin*/
scanf(”%s”,value[i]);

}
error = dbVerifyForm(pdbentry,value);
if(error) {

for(i=0; i<n; i++) {
if(error[i]) printf(”Error: %s (%s) %s\n”, prompt[i],

value[i],error[i]);
}

}else {
dbPutForm(pdbentry,value)

}
dbFreeForm(pdbentry);

All value strings are MAX_STRING_SIZE in length.

A set of form calls for a particular DBENTRY, MUST begin with a call to dbAllocForm and
end with a call to dbFreeForm. The values returned by dbGetFormPrompt,
dbGetFormValue, and dbVerifyForm are valid only between the calls to dbAllocForm
and dbFreeForm.

 Find Breakpoint Table

brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used by the
runtime breakpoint conversion routines so will not be discussed further.

 Dump Routines

void dbDumpPath(DBBASE *pdbbase)
void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,

int level);
void dbDumpMenu(DBBASE *pdbbase,char *menuName);
void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);
void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,

char *fname);
void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 123

Chapter 11: Static Database Access
Examples
void dbDumpDriver(DBBASE *pdbbase);
void dbDumpBreaktable(DBBASE *pdbbase,char *name);
void dbPvdDump(DBBASE *pdbbase,int verbose);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the database. dbDumpRecord,
dbDumpMenu, and dbDumpDriver just call the corresponding dbWritexxxFP routine
specifying stdout for the file. dbDumpRecDes, dbDumpFldDes, and dbDumpDevice give
internal information useful on an ioc. Note that all of these commands can be executed on an
ioc. Just specify pdbbase as the first argument.

 Examples

Expand Include This example is like the dbExpand utility, except that it doesn’t allow path or macro
substitution options, It reads a set of database definition files and writes all definitions to
stdout. All include statements appearing in the input files are expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>
#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;
int i;
int arg;

if(argc<2) {
printf("usage: expandInclude file1.db file2.db...\n");
exit(0);

 }
for(i=1; i<argc; i++) {

status = dbReadDatabase(&pdbbase,argv[i],NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv[i]);
errMessage(status,"from dbReadDatabase");

}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);
124 EPICS IOC Application Developer’s Guide

Chapter 11: Static Database Access
Examples
}

dbDumpRecords NOTE: This example is similar but not identical to the actual dbDumpRecords routine.

The following example demonstrates how to use the database access routines. The example
shows how to locate each record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;
long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
while(!status) {

printf(”record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”\n Record:%s\n”,dbGetRecordName(pdbentry));
while(!status) {

status = dbFirstField(pdbentry,TRUE);
if(status) printf(” No Fields\n”);
while(!status) {

printf(” %s:%s”,dbGetFieldName(pdbentry),
dbGetString(pdbentry));

status=dbNextField(pdbentry,TRUE);
}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf(”End of all Records\n”);
dbFreeEntry(pdbentry);

}

EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 125

Chapter 11: Static Database Access
Examples
126 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
 Overview

This chapter describes routines for manipulating and accessing an initialized IOC database.

This chapter is divided into the following sections:

• Database related include files. All of interest are listed and those of general interest are
discussed briefly.

• Runtime database access overview.

• Description of each runtime database access routine.

• Runtime modification of link fields.

• Lock Set Routines

• Database to Channel Access Routines

• Old Database Access. This is the interface still used by Channel Access and thus by
Channel Access clients.

 Database Include Files

Directory base/include contains a number of database related include files. Of interest to
this chapter are:

• dbDefs.h: Miscellaneous database related definitions

• dbFldTypes.h: Field type definitions

• dbAccess.h: Runtime database access definitions.

• link.h: Definitions for link fields.

dbDefs.h This file contains a number of database related definitions. The most important are:

• PVNAME_SZ: The number of characters allowed in the record name.

• FLDNAME_SZ: The number of characters formerly allowed in a field name. This
restriction no longer applies in any base software except dbCaLink.c. THIS SHOULD
BE FIXED. It is unknown what effect removing this restriction will have on Channel
Access Clients.

• MAX_STRING_SIZE: The maximum string size for string fields or menu choices.

• DB_MAX_CHOICES: The maximum number of choices for a choice field.

dbFldTypes.h This file defines the possible field types. A field’s type is perhaps its most important attribute.
Changing the possible field types is a fundamental change to the IOC software, because many
IOC software components are aware of the field types.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 127

Chapter 12: Runtime Database Access
Database Include Files
The field types are:

• DBF_STRING: ASCII character string

• DBF_CHAR: Signed character

• DBF_UCHAR: Unsigned character

• DBF_SHORT: Short integer

• DBF_USHORT: Unsigned short integer

• DBF_LONG: Long integer

• DBF_ULONG: Unsigned long integer

• DBF_FLOAT: Floating point number

• DBF_DOUBLE: Double precision float

• DBF_ENUM: An enumerated field

• DBF_MENU: A menu choice field

• DBF_DEVICE: A device choice field

• DBF_INLINK: Input Link

• DBF_OUTLINK: Output Link

• DBF_FWDLINK: Forward Link

• DBF_NOACCESS: A private field for use by record access routines

A field of type DBF_STRING, ..., DBF_DOUBLE can be a scalar or an array. A DBF_STRING
field contains a NULL terminated ascii string. The field types DBF_CHAR, ..., DBF_DOUBLE
correspond to the standard C data types.

DBF_ENUM is used for enumerated items, which is analogous to the C language enumeration.
An example of an enum field is field VAL of a multi bit binary record.

The field types DBF_ENUM, DBF_MENU, and DBF_DEVICE all have an associated set of
ASCII strings defining the choices. For a DBF_ENUM, the record support module supplies
values and thus are not available for static database access. The database access routines locate
the choice strings for the other types.

DBF_INLINK and DBF_OUTLINK specify link fields. A link field can refer to a signal located
in a hardware module, to a field located in a database record in the same IOC, or to a field
located in a record in another IOC. A DBF_FWDLINK can only refer to a record in the same
IOC. Link fields are described in a later chapter.

DBF_INLINK (input), DBF_OUTLINK (output), and DBF_FWDLINK (forward) specify that
the field is a link structure as defined in link.h. There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a
constant value. This is somewhat of a misnomer because constant link fields can be
modified via dbPutField or dbPutLink.

2. Hardware links - The link contains a data structure which describes a signal connected
to a particular hardware bus. See link.h for a description of the bus types currently
supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same IOC.
c. CA_LINK: A reference to a variable located in another IOC.

DCT always creates a PV_LINK. When the IOC is initialized each PV_LINK is converted
either to a DB_LINK or a CA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.
128 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview
dbAccess.h This file is the interface definition for the run time database access library, i.e. for the routines
described in this chapter.

An important structure defined in this header file is DBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; /* address of field*/
void *pfldDes; /* address of struct fldDes*/
void *asPvt; /* Access Security Private*/
long no_elements; /* number of elements (arrays)*/
short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/
short special; /* special processing*/
short dbr_field_type; /*optimal database request type*/

}DBADDR;

• precord: Address of record. Note that its type is a pointer to a structure defining the
fields common to all record types. The common fields appear at the beginning of each
record. A record support module can cast precord to point to the specific record type.

• pfield: Address of the field within the record. Note that pfield provides direct access
to the data value.

• pfldDes: This points to a structure containing all details concerning the field. See
Chapter “Database Structures” for details.

• asPvt: A field used by access security.

• no_elements: A string or numeric field can be either a scalar or an array. For scalar
fields no_elements has the value 1. For array fields it is the maximum number of
elements that can be stored in the array.

• field_type: Field type.

• field_size: Size of one element of the field.

• special: Some fields require special processing. This specifies the type. Special
processing is described later in this manual.

• dbr_field_type: This specifies the optimal database request type for this field, i.e. the
request type that will require the least CPU overhead.

NOTE: pfield, no_elements, field_type, field_size, special, and
dbr_field_type can all be set by record support (cvt_dbaddr). Thus field_type,
field_size, and special can differ from that specified by pfldDes.

link.h This header file describes the various types of link fields supported by EPICS.

 Runtime Database Access Overview

With the exception of record and device support, all access to the database is via the channel
or database access routines. Even record support routines access other records only via
database or channel access. Channel Access, in turn, accesses the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the
set of routines that constitute database access. This provides a good look at the facilities
provided by the database.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 129

Chapter 12: Runtime Database Access
Runtime Database Access Overview
Before describing database access, one caution must be mentioned. The only way to
communicate with an IOC database from outside the IOC is via Channel Access. In addition,
any special purpose software, i.e. any software not described in this document, should
communicate with the database via Channel Access, not database access, even if it resides in
the same IOC as the database. Since Channel Access provides network independent access to a
database, it must ultimately call database access routines. The database access interface was
changed in 1991, but Channel Access was never changed. Instead a module was written which
translates old style database access calls to new. This interface between the old and new style
database access calls is discussed in the last section of this chapter.

The database access routines are:

• dbNameToAddr: Locate a database variable.

• dbGetField: Get values associated with a database variable.

• dbGetLink: Get value of field referenced by database link (Macro)

• dbGetLinkValue: Get value of field referenced by database link (Subroutine)

• dbGet: Routine called by dbGetLinkValue and dbGetField

• dbPutField: Change the value of a database variable.

• dbPutLink: Change value referenced by database link (Macro)

• dbPutLinkValue: Change value referenced by database link (Subroutine)

• dbPut: Routine called by dbPutxxx functions.

• dbPutNotify: A database put with notification on completion

• dbNotifyCancel: Cancel dbPutNotify

• dbNotifyAdd: Add a new record for to notify set.

• dbNotifyCompletion: Announce that put notify is complete.

• dbBufferSize: Determine number of bytes in request buffer.

• dbValueSize: Number of bytes for a value field.

• dbGetRset Get pointer to Record Support Entry Table

• dbIsValueField Is this field the VAL field.

• dbGetFieldIndex Get field index. The first field in a record has index 0.

• dbGetNelement Get number of elements in the field

• dbIsLinkConnected Is the link field connected.

• dbGetPdbAddrFromLink Get address of DBADDR.

• dbGetLinkDBFtype Get field type of link.

• dbPutAttribute Give a value to a record attribute.

• dbScanPassive: Process record if it is passive.

• dbScanLink: Process record referenced by link if it is passive.

• dbProcess: Process Record

• dbScanFwdLink: Scan a forward link.

Database Request
Types and Options

Before describing database access structures, it is necessary to describe database request types
and request options. When dbPutField or dbGetField are called one of the arguments is
a database request type. This argument has one of the following values:

• DBR_STRING: Value is a NULL terminated string
130 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Runtime Database Access Overview
• DBR_CHAR: Value is a signed char

• DBR_UCHAR: Value is an unsigned char

• DBR_SHORT: Value is a short integer

• DBR_USHORT: Value is an unsigned short integer

• DBR_LONG: Value is a long integer

• DBR_ULONG: Value is an unsigned long integer

• DBR_FLOAT: Value is an IEEE floating point value

• DBR_DOUBLE: Value is an IEEE double precision floating point value

• DBR_ENUM: Value is a short which is the enum item

• DBR_PUT_ACKT: Value is an unsigned short for setting the ACKT.

• DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request types DBR_STRING,..., DBR_DOUBLE correspond exactly to valid data types for
database fields. DBR_ENUM corresponds to database fields that represent a set of choices or
options. In particular it corresponds to the fields types DBF_ENUM, DBF_DEVICE, and
DBF_MENU. The complete set of database field types are defined in dbFldTypes.h.
DBR_PUT_ACKT and DBR_PUT_ACKS are used to perform global alarm acknowledgment.

dbGetField also accepts argument options which is a mask containing a bit for each
additional type of information the caller desires. The complete set of options is:

• DBR_STATUS: returns the alarm status and severity

• DBR_UNITS: returns a string specifying the engineering units

• DBR_PRECISION: returns a long integer specifying floating point precision.

• DBR_TIME: returns the time

• DBR_ENUM_STRS: returns an array of strings

• DBR_GR_LONG: returns graphics info as long values

• DBR_GR_DOUBLE: returns graphics info as double values

• DBR_CTRL_LONG: returns control info as long values

• DBR_CTRL_DOUBLE: returns control info as double values

• DBR_AL_LONG: returns alarm info as long values

• DBR_AL_DOUBLE: returns alarm info as double values

Options
Example

The file dbAccess.h contains macros for using options. A brief example should show how
they are used. The following example defines a buffer to accept an array of up to ten float
values. In addition it contains fields for options DBR_STATUS and DBR_TIME.

struct buffer {
DBRstatus
DBRtime
float value[10];

} buffer;

The associated dbGetField call is:

long options,number_elements,status;
 ...
options = DBR_STATUS | DBR_TIME;
number_elements = 10;
status =

dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

Consult dbAccess.h for a complete list of macros.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 131

Chapter 12: Runtime Database Access
Database Access Routines
Structure dbAddr contains a field dbr_field_type. This field is the database request type
that most closely matches the database field type. Using this request type will put the smallest
load on the IOC.

Channel Access provides routines similar to dbGetField, and dbPutField. It provides
remote access to dbGetField, dbPutField, and to the database monitors described below.

ACKT and ACKS The request types DBR_PUT_ACKT and DBR_PUT_ACKS are used for global alarm
acknowledgment. The alarm handler uses these requests. For each of these types the user
(normally channel access) passes an unsigned short value. This value represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS - The highest alarm severity to acknowledge. If the current alarm severity is
less then or equal to this value the alarm is acknowledged.

 Database Access Routines

dbNameToAddr Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to
database records and fields within records. The basic rules are:

• Call dbNameToAddr once and only once for each field to be accessed.

• Read field values via dbGetField and write values via dbPutField.

The routines described in this subsection are used by channel access, sequence programs, etc.
Record processing routines, however, use the routines described in the next section rather then
dbGetField and dbPutField.

Given a process variable name, this routine locates the process variable and fills in the fields of
structure dbAddr. The format for a process variable name is:

 “<record_name>.<field_name>”

For example the value field of a record with record name sample_name is:

 “sample_name.VAL”.

The record name is case sensitive. Field names always consist of all upper case letters.

dbNameToAddr locates a record via a process variable directory (PVD). It fills in a structure
(dbAddr) describing the field. dbAddr contains the address of the record and also the field.
Thus other routines can locate the record and field without a search. Although the PVD allows
the record to be located via a hash algorithm and the field within a record via a binary search, it
still takes about 80 microseconds (25MHz 68040) to located a process variable. Once located
the dbAddr structure allows the process variable to be accessed directly.
132 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines
Get Routines

dbGetField Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, calls dbGet, and unlocks.

dbGetLink
dbGetLinkValue

Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
 1) options can be NULL if no options are desired.
 2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that calls dbGetLinkValue. The macro skips the call for
constant links. User code should never call dbGetLinkValue.

This routine is called by database access itself and by record support and/or device support
routines in order to get values for input links. The value can be obtained directly from other
records or via a channel access client. This routine honors the link options (process and
maximize severity). In addition it has code that optimizes the case of no options and scalar.

dbGet Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/

Thus routine retrieves the data referenced by paddr and converts it to the format specified by
dbrType.

”options” is a read/write field. Upon entry to dbGet, options specifies the desired
options. When dbGetField returns, options specifies the options actually honored. If an
option is not honored, the corresponding fields in buffer are filled with zeros.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 133

Chapter 12: Runtime Database Access
Database Access Routines
”nRequest” is also a read/write field. Upon entry to dbGet it specifies the maximum number
of data elements the caller is willing to receive. When dbGet returns it equals the actual
number of elements returned. It is permissible to request zero elements. This is useful when
only option data is desired.

”pfl” is a field used by the Channel Access monitor routines. All other users must set
pfl=NULL.

dbGet calls one of a number of conversion routines in order to convert data from the DBF
types to the DBR types. It calls record support routines for special cases such as arrays. For
example, if the number of field elements is greater then 1 and record support routine
get_array_info exists, then it is called. It returns two values: the current number of valid
field elements and an offset. The number of valid elements may not match
dbAddr.no_elements, which is really the maximum number of elements allowed. The
offset is for use by records which implement circular buffers.

Put Routines

dbPutField Change the value of a process variable, format:

long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as
necessary, and modifying the database. Similar to dbGetField, this routine calls one of a
number of conversion routines to do the actual conversion and relies on record support routines
to handle arrays and other special cases.

It should be noted that routine dbPut does most of the work. The actual algorithm for
dbPutField is:

1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified,
the field is not written.

2. The record is locked.

3. dbPut is called.

4. If the dbPut is successful then:
If this is the PROC field or if both of the following are TRUE: 1) the field is a process
passive field, 2) the record is passive.

a. If the record is already active ask for the record to be reprocessed when it
completes.

b. Call dbScanPassive after setting putf TRUE to show the process request
came from dbPutField.

5. The record is unlocked.

dbPutLink
dbPutLinkValue

Change the value referenced by a database link, format:

long dbPutLink(
structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data to write*/
long nRequest);/*number of elements to write*/
134 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines
dbPutLink is actually a macro that calls dbPutLinkValue. The macro skips the call for
constant links. User code should never call dbPutLinkValue.

This routine is called by database access itself and by record support and/or device support
routines in order to put values into other database records via output links.

For Channel Access links it calls dbCaPutLink.

For database links it performs the following functions:

1. Calls dbPut.

2. Implements maximize severity.

3. If the field being referenced is PROC or if both of the following are true: 1)
process_passive is TRUE and 2) the record is passive then:

a. If the record is already active because of a dbPutField request then ask for the
record to be reprocessed when it completes.

b. otherwise call dbScanPassive.

dbPut Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of the DBR_xxx formats, converting it as
necessary, and modifying the database. Similar to dbGet, this routine calls one of a number of
conversion routines to do the actual conversion and relies on record support routines to handle
arrays and other special cases.

Put Notify Routines dbPutNotify is a request to notify the caller when all records that are processed as a result
of a put complete processing. The complication occurs because of record linking and
asynchronous records. A put can cause an entire chain of records to process. If any record is an
asynchronous record then record completion means asynchronous completion.

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directed,
dbPutNotify just returns S_db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine will be
always be called unless dbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an error is
detected. If everything completes synchronously the callback routine will be called
BEFORE dbPutNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Unix I/O
requests.

4. In general a set of records may need to be processed as a result of a single
dbPutNotify. If database access detects that another dbPutNotify request is active
on any record in the set, other then the record referenced by the dbPutNotify, then
the dbPutNotify request will restarted

5. If a record in the set is found to be active because of a dbPutField request then when
that record completes the dbPutNotify will be restarted.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 135

Chapter 12: Runtime Database Access
Database Access Routines
6. If a record is found to already be active because of the original dbPutNotify request
then nothing is done. This is what is done now and any attempt to do otherwise could
easily cause existing databases to go into an infinite processing loop.

It is expected that the caller will arrange a timeout in case the dbPutNotify takes too long.
In this case the caller can call dbNotifyCancel

dbPutNotify Perform a database put and notify when record processing is complete.

Format:

long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{
void (*userCallback)(struct putNotify *);
DBADDR *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/
void *usrPvt; /*for private use of user*/
/*The following is status of request.Set by dbPutNotify*/
long status;
/*fields private to database access*/
...

}PUTNOTIFY;

The caller must allocate a PUTNOTIFY structure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR
pbuffer - address of data
nRequest - number of data elements
dbrType - database request type
usrPvt - a void * field that caller can use as needed.

The status value returned by dbPutNotify is either:

• S_db_Pending: Success: Callback may already have been called or will be called later.

• S_db_Blocked: The request failed because a dbPutNotify is already active in the
record to which the put is directed.

When the user supplied callback is called, the status value stored in PUTNOTIFY is one of the
following:

• 0: Success

• S_xxxx: The request failed due to some other error.

The user callback is always called unless dbPutNotify returns S_db_Blocked or
dbNotifyCancel is called before the put notify competes.

dbNotifyCancel Cancel an outstanding dbPutNotify.

Format:

void dbNotifyCancel(PUTNOTIFY *pputnotify);
136 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Database Access Routines
This cancels an active dbPutNotify.

dbNotifyAdd This routine is called by database access itself. It should never be called by user code.

dbNotifyCompletion This routine is called by database access itself. It should never be called by user code.

Utility Routines

dbBufferSize Determine the buffer size for a dbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returned to dbGetField if the request
type, options, and number of elements are specified as given to dbBufferSize. Thus it can
be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

dbValueSize Determine the size a value field, format:

dbValueSize(short dbrType);/* DBR_xxx*/

This routine returns the number of bytes for each element of type dbrType.

NOTE: This should become a Channel Access routine

dbGetRest Get address of a record support entry table.

Format:

struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenced by
the DBADDR.

dbIsValueField Is this field the VAL field of the record?

Format:

int dbIsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes the get_value record support routine obsolete.

dbGetFieldIndex Get field index.

Format:

int dbGetFieldIndex(DBADDR *paddr);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 137

Chapter 12: Runtime Database Access
Database Access Routines
Record support routines such as special and cvt_dbaddr need to know which field the
DBADDR references. The include file describing the record contains define statements for each
field. dbGetFieldIndex returns the index that can be matched against the define
statements (normally via a switch statement).

dbGetNelements Get number of elements in a field.

Format:

 long dbGetNelements(struct link *plink,long *nelements);

This sets *nelements to the number of elements in the field referenced by plink.

dbIsLinkConnected Is the link connected.

Format:

int dbIsLinkConnected(struct link *plink);

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

dbGetPdbAddrFromL
ink

Get address of DBADDR from link.

Format:

DBADDR *dbGetPdbAddrFromLink(struct link *plink);

This macro returns the address of the DBADDR for a database link and NULL for all other
link types.

dbGetLinkDBFtype Get field type of a link.

Format:

int dbGetLinkDBFtype(struct link *plink);

Attribute Routine

dbPutAttribute Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
 char *name,char*value);

This sets the record attribute name for record type recordTypename to value.For
example the following would set the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")

Process Routines

dbScanPassive
dbScanLink
dbScanFwdLink

Process record if it is passive, format:

long dbScanPassive(
struct dbCommon *pfrom,
struct dbCommon *pto); /* addr of record*/

long dbScanLink(
138 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Runtime Link Modification
struct dbCommon *pfrom,
struct dbCommon *pto);

void dbScanFwdLink(struct link *plink);

dbScanPassive and dbScanLink are given the record requesting the scan, which may
be NULL, and the record to be processed. If the record is passive and pact=FALSE then
dbProcess is called. Note that these routine are called by dbGetLink, dbPutField, and
by recGblFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules for
scanning a forward link. That is for DB_LINKs it calls dbScanPassive and for CA_LINKS it
does a dbCaPutLink if the PROC field of record is being addressed.

dbProcess Request that a database record be processed, format:

long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

 Runtime Link Modification

Database links can be changed at run time but only via a channel access client, i.e. via calls to
dbPutField but not to dbPutLink. The following restrictions apply:

• Only DBR_STRING is allowed.

• If a link is being changed to a different hardware link type then the DTYP field must be
modified before the link field.

• The syntax for the string field is exactly the same as described for link fields in chapter
“Database Definition”

NOTE: For this release modification to/from hardware links has not been tested. In addition
modification to record/device support will be needed in order to properly support dynamic
modification of hardware links.

 Channel Access Monitors

There are facilities within the Channel Access communication infrastructure which allow the
value of a process variable to be monitored by a channel access client. It is a responsibility of
record support (and db common) to notify the channel access server when the internal state of
a process variable has been modified. State changes can include changes in the value of a
process variable and also changes in the alarm state of a process variable. The routine
“db_post_events()” is called to inform the channel access server that a process variable state
change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,
unsigned intselect);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 139

Chapter 12: Runtime Database Access
Lock Set Routines
The first argument, “precord”, should be passed a pointer to the record which is posting the
event(s). The second argument, “pfield”, should be passed a pointer to the field in the record
that contains the process variable that has been modified. The third argument, “select”, should
be passed an event select mask. This mask can be any logical or combination of
{DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the
event select mask follows.

• DBE_VALUE This indicates that a significant change in the process variable’s value has
occurred. A significant change is often determined by the magnitude of the monitor
“dead band” field in the record.

• DBE_LOG This indicates that a change in the process variable’s value significant to
archival clients has occurred. A significant change to archival clients is often determined
by the magnitude of the archive “dead band” field in the record.

• DBE_ALARM This indicates that a change in the process variable’s alarm state has
occurred.

The function “db_post_events()” returns 0 if it is successful and -1 if it fails. It appears to be
common practice within EPICS record support to ignore the status from “db_post_events()”.
At this time “db_post_events()” always returns 0 (success). because so many records at this
time depend on this behavior it is unlikely that it will be changed in the future.

The function “db_post_events()” is written so that record support will never be blocked
attempting to post an event because a slow client is not able to process events fast enough.
Each call to “db_post_events()” causes the current value, alarm status, and time stamp for the
field to be copied into a ring buffer. The thread calling “db_post_events()” will not be delayed
by any network or memory allocation overhead. A lower priority thread in the server is
responsible for transferring the events in the event queue to the channel access clients that may
be monitoring the process variable.

Currently, when an event is posted for a DBF_STRING field or a field containing array data the
value is NOT saved in the ring buffer and the client will receive whatever value happens to be
in the field when the lower priority thread transfers the event to the client. This behavior may
be improved in the future.

 Lock Set Routines

User code only calls dbScanLock and dbScanUnlock. All other routines are called by
iocCore.

dbScanLock Lock a lock set:

long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.

dbScanUnlock Unlock a lock set:

long void dbScanUnlock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs
140 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links
dbLockGetLockId Get lock set id:

long dbLockGetLockId(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to determine
if two records are in the same lock set.

dbLockInitRecords Determine lock sets for each record in database.

void dbLockInitRecords(dbBase *pdbbase);

Called by iocInit.

dbLockSetMerge Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by
dbLockInitRecords and also when links are modified by dbPutField.

dbLockSetSplitSl Recompute lock sets for given lock set

void dbLockSetSplit(struct dbCommon *psource);

This is called when dbPutField modifys links.

dbLockSetGblLock Global lock for modifying links.

void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prevent
conflicts.

dbLockSetGblUnlock Unlock the global lock.

void dbLockSetGblUnlock(void);

dbLockSetRecordLockIf record is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);

 Channel Access Database Links

The routines described here are used to create and manipulate Channel Access connections
from database input or output links. At IOC initialization an attempt is made to convert all
process variable links to database links. For any link that fails, it is assumed that the link is a
Channel Access link, i.e. a link to a process variable defined in another IOC. The routines
described here are used to manage these links. User code never needs to call these routines.
They are automatically called by iocInit and database access.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 141

Chapter 12: Runtime Database Access
Channel Access Database Links
At iocInit time a task dbCaLink is spawned. This task is a channel access client that
issues channel access requests for all channel access links in the database. For each link a
channel access search request is issued. When the search succeeds a channel access monitor is
established. The monitor is issued specifying ca_field_type and ca_element_count.
A buffer is also allocated to hold monitor return data as well as severity. When dbCaGetLink
is called data is taken from the buffer, converted if necessary, and placed in the location
specified by the pbuffer argument.

When the first dbCaPutLink is called for a link an output buffer is allocated, again using
ca_field_type and ca_element_count. The data specified by the pbuffer argument is
converted and stored in the buffer. A request is then made to dbCaLink task to issue a
ca_put. Subsequent calls to dbCaPutLink reuse the same buffer.

Basic Routines These routines are normally only called by database access, i.e. they are not called by record
support modules.

dbCaLinkInit Called by iocInit to initialize the dbCa library

void dbCaLinkInit(void);

dbCaAddLink Add a new channel access link

void dbCaAddLink(struct link *plink);

dbCaRemoveLink Remove channel access link.

void dbCaRemoveLink(struct link *plink);

dbCaGetLink Get link value

long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);

dbCaPutLink Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);

dbGetNelements Get Number of Elements

long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of elements.

dbCaGetSevr Get Alarm Severity

long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

dbCaIsLinkConnectedIs Channel Connected

int dbCaIsLinkConnected(struct link *plink)
142 EPICS IOC Application Developer’s Guide

Chapter 12: Runtime Database Access
Channel Access Database Links
This routine returns (TRUE, FALSE) if the link (is, is not) connected.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 143

Chapter 12: Runtime Database Access
Channel Access Database Links
144 EPICS IOC Application Developer’s Guide

Chapter 13: Device Support Library
 Overview

Include file devLib.h provides definitions for a library of routines useful for device and
driver modules. These are a new addition to EPICS and are not yet used by all device/driver
support modules. Until they are, the registration routines will not prevent addressing conflicts
caused by multiple device/drivers trying to use the same VME addresses.

 Registering VME Addresses

Definitions of
Address Types

typedef enum {
atVMEA16,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName[]
= {
”VME A16”,
”VME A24”,
”VME A32”
};

int EPICStovxWorksAddrType[]
= {
VME_AM_SUP_SHORT_IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

};

Register Address long devRegisterAddress(
const char *pOwnerName,

epicsAddressType addrType,
void *baseAddress,
unsigned size,
void **pLocalAddress);

This routine is called to register a VME address. This routine keeps a list of all VME addresses
requested and returns an error message if an attempt is made to register any addresses that are
already being used. *pLocalAddress is set equal to the address as seen by the caller.
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 145

Chapter 13: Device Support Library
Interrupt Connect Routines
Unregister Address long devUnregisterAddress(
epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by a call to devRegisterAddress.

 Interrupt Connect Routines

Definitions of
Interrupt Types

typedef enum {intCPU, intVME, intVXI} epicsInterruptType;

Connect long devConnectInterrupt(
epicsInterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),
void *parameter);

Disconnect long devDisconnectInterrupt(
epicsInterruptType intType,
unsigned vectorNumber);

Enable Level long devEnableInterruptLevel(
epicsInterruptType intType,
unsigned level);

Disable Level long devDisableInterruptLevel(
epicsInterruptType intType,
unsigned level);

 Macros and Routines for Normalized Analog Values

Normalized GetField long devNormalizedGblGetField(
long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

This routine is just like recGblGetField, except that if the request type is DBR_FLOAT or
DBR_DOUBLE, the normalized value of rawValue is obtained, i.e. rawValue is converted to
a value in the range 0.0<=value<.1.0
146 EPICS IOC Application Developer’s Guide

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values
Convert Digital
Value to a
Normalized Double
Value

#define devCreateMask(NBITS)((1<<(NBITS))-1)
#define devDigToNml(DIGITAL,NBITS) \

(((double)(DIGITAL))/devCreateMask(NBITS))

Convert Normalized
Double Value to a
Digital Value

#define devNmlToDig(NORMAL,NBITS) \
(((long)(NORMAL)) * devCreateMask(NBITS))
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 147

Chapter 13: Device Support Library
Macros and Routines for Normalized Analog Values
148 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
 Overview

This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2)
Task Watchdog.

Often when writing code for an IOC there is no obvious task under which to execute. A good
example is completion code for an asynchronous device support module. EPICS supplies the
callback tasks for such code.

If an IOC tasks "crashes" there is normally no one monitoring the vxWorks shell to detect the
problem. EPICS provides a task watchdog task which periodically checks the state of other
tasks. If it finds that a monitored task has terminated or suspended it issues an error message
and can also call other routines which can take additional actions. For example a subroutine
record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC code
that issues printf calls generates errors messages that are never seen. In addition the
vxWorks implementation of fprintf requires much more stack space then printf calls.
Another problem with vxWorks is the logMsg facility. logMsg generates messages at higher
priority then all other tasks except the shell. EPICS solves all of these problems via an error
message handling facility. Code can call any of the routines errMessage, errPrintf, or
epicsPrintf. Any of these result in the error message being generated by a separate low
priority task. The calling task has to wait until the message is handled but other tasks are not
delayed. In addition the message can be sent to a system wide error message file.

 General Purpose Callback Tasks

Overview EPICS provides three general purpose IOC callback tasks. The only difference between the
tasks is scheduling priority: Low, Medium, and High. The low priority task runs at a priority
just higher than Channel Access, the medium at a priority about equal to the median of the
periodic scan tasks, and the high at a priority higher than the event scan task.The callback tasks
provide a service for any software component that needs a task under which to run. The
callback tasks use the task watchdog (described below). They use a rather generous stack and
can thus be used for invoking record processing. For example the I/O event scanner uses the
general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 149

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks
2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;

It is permissible for this to be part of a larger structure, e.g.

struct {
...
CALLBACK mycallback;
...

} ...

3. Call routines (actually macros) to initialize fields in CALLBACK:

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function
returning VOID. The second argument is the address of the CALLBACK structure.

callbackSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the values: priorityLow,
priorityMedium, or priorityHigh. These values are defined in callback.h.
The second argument is again the address of the CALLBACK structure.

callbackSetUser(VOID *, CALLBACK *);

This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single
argument, which is the same argument that was passed to callbackRequest, i.e., the
address of the CALLBACK structure.

Syntax The following calls are provided:

long callbackInit(void);

void callbackSetCallback(void *pcallbackFunction,
CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);
void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,

int Priority, void *pRec);
150 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
General Purpose Callback Tasks
void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:

• callbackInit is performed automatically when EPICS initializes and IOC. Thus
user code never calls this function.

• callbackSetCallback, callbackSetPriority, callbackSetUser, and
callbackGetUser are actually macros.

• callbackRequest and callbackRequestProcessCallback can both be
called at interrupt level.

• callbackRequestProcessCallback is designed for the completion phase of
asynchronous record processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback, which is designed for asynchronous device completion
applications, consists of the following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;
struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

}

Example An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];

}myStruct;

void myCallback(CALLBACK *pcallback)
{

struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf(”begid=%s endid=%s\n”,&pmyStruct->begid[0],

&pmStruct->endid[0]);
}
example(char *pbegid, char*pendid)
{

strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 151

Chapter 14: EPICS General Purpose Tasks
Task Watchdog
callbackSetCallback(myCallback,&myStruct.callback);
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:

example(”begin”,”end”)

This simple example shows how to use the callback tasks with your own structure that contains
the CALLBACK structure at an arbitrary location.

Callback Queue The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to
hold 2000 requests. This value can bechanged by calling callbackSetQueueSize before
incInit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

 Task Watchdog

EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to
be watched. The task watchdog runs periodically and checks each task in its task list. If any
task is suspended, an error message is issued and, optionally, a callback task is invoked. The
task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdInsert (int tid, VOIDFUNCPTR callback,
VOID *userarg);

This is the request to include the task with the specified tid in the list of tasks to be
watched. If callback is not NULL then if the task becomes suspended, the callback
routine will be called with a single argument userarg.

3. Remove request:

taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when the
original task goes into the suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnyInsert(void *userpvt,VOIDFUNCPTR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by the
task watchdog task suspends. userpvt must have a non NULL unique value
152 EPICS IOC Application Developer’s Guide

Chapter 14: EPICS General Purpose Tasks
Task Watchdog
taskwdAnyInsert, because the task watchdog system uses this value to determine
who to remove if taskwdAnyRemove is called.

5. Remove request for taskwdAnyInsert:

taskwdAnyRemove(void *userpvt);

userpvt is the value that was passed to taskwdAnyInsert.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 153

Chapter 14: EPICS General Purpose Tasks
Task Watchdog
154 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
 Overview

Database scanning is the mechanism for deciding when to process a record. Five types of
scanning are possible:

• Periodic: A record can be processed periodically. A number of time intervals are
supported.

• Event: Event scanning is based on the posting of an event by another component of the
software via a call to the routine post_event.

• I/O Event: The original meaning of this scan type is a request for record processing as
a result of a hardware interrupt. The mechanism supports hardware interrupts as well as
software generated events.

• Passive: Passive records are processed only via requests to dbScanPassive. This
happens when database links (Forward, Input, or Output), which have been declared
”Process Passive” are accessed during record processing. It can also happen as a result
of dbPutField being called (This normally results from a Channel Access put
request).

• Scan Once: In order to provide for caching puts, The scanning system provides a
routine scanOnce which arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database
fields involved with scanning. It next discusses the interface to the scanning system. The last
section gives a brief overview of how the scanners are implemented.

 Scan Related Database Fields

The following fields are normally defined via DCT. It should be noted, however, that it is quite
permissible to change any of the scan related fields of a record dynamically. For example, a
display manager screen could tie a menu control to the SCAN field of a record and allow the
operator to dynamically change the scan mechanism.

SCAN This field, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.
Event: Event Scanned. The field EVNT specifies event number
I/O Event scanned.
10 Second: Periodically scanned - Every 10 seconds
...
.1 Second: Periodically scanned - Every .1 seconds
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 155

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System
PHAS This field determines processing order for records that are in the same scan set. For example all
records periodically scanned at a 2 second rate are in the same scan set. All Event scanned
records with the same EVNT are in the same scan set, etc. For records in the same scan set, all
records with PHAS=0 are processed before records with PHAS=1, which are processed before
all records with PHAS=2, etc.

In general it is not a good idea to rely on PHAS to enforce processing order. It is better to use
database links.

EVNT - Event
Number

This field only has meaning when SCAN is set to Event scanning, in which case it specifies
the event number. In order for a record to be event scanned, EVNTmust be in the range 0,...255.
It should also be noted that some EPICS software components will not request event scanning
for event 0. One example is the eventRecord record support module. Thus the application
developer will normally want to define events in the range 1,...,255.

PRIO - Scheduling
Priority

This field can be used by any software component that needs to specify scheduling priority,
e.g. the event and I/O event scan facility uses this field.

 Software Components That Interact With The Scanning
System

menuScan.ascii This file contains definitions for a menu related to field SCAN. The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”Event”)
choice(menuScanI_O_Intr,”I/O Intr”)
choice(menuScan10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScan1_second,”1 second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are
for the periodic scan rates, which must appear in order of decreasing rate. At IOC initialization,
the menu values are read by scan initialization. The number of periodic scan rates and the value
of each rate is determined from the menu values. Thus periodic scan rates can be changed by
changing menuScan.ascii and loading this version via dbLoadAscii. The only
requirement is that each periodic definition must begin with the value and the value must be in
units of seconds.

dbScan.h All software components that interact with the scanning system must include this file.

The most important definitions in this file are:

/* Note that these must match the first four definitions*/
/* in choiceGbl.ascii*/
#define SCAN_PASSIVE 0
156 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Software Components That Interact With The Scanning Sys-
#define SCAN_EVENT 1
#define SCAN_IO_EVENT 2
#define SCAN_1ST_PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);
void post_event(int event);
void scanAdd(struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord);
int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/
void scanIoInit(IOSCANPVT *);
void scanIoRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definitions
(IOSCANPVT and interruptAccept) are for interfacing with the I/O event scanner. The
remaining definitions define the public scan access routines. These are described in the
following subsections.

Initializing Database
Scanners

scanInit(void);

The routine scanInit is called by iocInit. It initializes the scanning system.

Adding And
Deleting Records
From Scan List

The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDelete(struct dbCommon *);

These routines are called by scanInit at IOC initialization time in order to enter all records
created via DCT into the correct scan list. The routine dbPut calls scanDelete and
scanAdd each time a scan related field is changed (each scan related field is declared to be
SPC_SCAN in dbCommon.ascii). scanDelete is called before the field is modified and
scanAdd after the field is modified.

Declaring Database
Event

Whenever any software component wants to declare a database event, it just calls:

post_event(event)

This can be called by virtually any IOC software component. For example sequence programs
can call it. The record support module for eventRecord calls it.

Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include <dbScan.h>

2. For each separate event source the following must be done:
a. Declare an IOSCANPVT variable, e.g.

static IOSCANPVT ioscanpvt;
b. Call scanIoInit, e.g.

scanIoInit(&ioscanpvt);
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 157

Chapter 15: Database Scanning
Software Components That Interact With The Scanning System
3. Provide the device support get_ioint_info routine. This routine has the format:
long get_ioint_info(

int cmd,
struct dbCommon *precord,

IOSCANPVT *ppvt);
This routine is called each time the record pointed to by precord is added or deleted
from an I/O event scan list. cmd has the value (0,1) if the record is being (added to,
deleted from) an I/O event list. This routine must give a value to *ppvt.

4. Whenever an I/O event is detected call scanIoRequest, e.g.
scanIoRequest(ioscanpvt)

This routine can be called from interrupt level. The request is actually directed to one of
the standard callback tasks. The actual one is determined by the PRIO field of
dbCommon.

The following code fragment shows an event record device support module that supports I/O
event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;

}devEventTestIoEvent={
5,
NULL,
init,
NULL,
get_ioint_info,
NULL};

static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)
{
 scanIoRequest(ioscanpvt);
}

static long init()
{
 scanIoInit(&ioscanpvt);
 intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);
158 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Implementation Overview
 return(0);
}
static long get_ioint_info(

int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)

{
 *ppvt = ioscanpvt;
 return(0);
}

 Implementation Overview

The code for the entire scanning system resides in dbScan.c, i.e. periodic, event, and I/O
event. This section gives an overview of how the code in dbScan.c is organized. The listing
of dbScan.c must be studied for a complete understanding of how the scanning system
works.

Definitions And
Routines Common
To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;
ELLLIST list;
short modified;
long ticks; /*used only for periodic scan sets*/

};

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon *precord;

}

Later we will see how scan_lists are determined. For now just realize that
scan_list.list is the head of a list of records that belong to the same scan set (for
example, all records that are periodically scanned at a 1 second rate are in the same scan set).
The node field in scan_element contain the list links. The normal vxWorks lstLib
routines are used to access the list. Each record that appears in some scan list has an associated
scan_element. The SPVT field which appears in dbCommon holds the address of the
associated scan_element.

The lock, modified, and pscan_list fields allow scan_elements, i.e. records, to be
dynamically removed and added to scan lists. If scanList, the routine which actually
processes a scan list, is studied it can be seen that these fields allow the list to be scanned very
efficiently if no modifications are made to the list while it is being scanned. This is, of course,
the normal case.

The dbScan.c module contains several private routines. The following access a single scan
set:

• printList: Prints the names of all records in a scan set.
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 159

Chapter 15: Database Scanning
Implementation Overview
• scanList: This routine is the heart of the scanning system. For each record in a scan set
it does the following:
dbScanLock(precord);
dbProcess(precord);
dbScanUnlock(precord);

It also has code to recognize when a scan list is modified while the scan set is being
processed.

• addToList: This routine adds a new element to a scan list.

• deleteFromList: This routine deletes an element from a scan list.

Event Scanning Event scanning is built around the following definitions:

#define MAX_EVENTS 256
typedef struct event_scan_list {

 CALLBACK callback;
 scan_list scan_list;

}event_scan_list;
static event_scan_list

*pevent_list[NUM_CALLBACK_PRIORITIES][MAX_EVENTS];

pevent_list is a 2d array of pointers to scan_lists. Note that the array allows for 256
events, i.e. one for each possible event number. In other words, each event number and priority
has its own scan list. No scan_list is actually created until the first request to add an
element for that event number. The event scan lists have the memory layout illustrated in
Figure 15-1.

post_event post_event(int event)

This routine is called to request event scanning. It can be called from interrupt level. It looks at
each event_scan_list referenced by pevent_list[*][event] (one for each callback
priority) and if any elements are present in the scan_list a callbackRequest is issued.
The appropriate callback task calls routine eventCallback, which just calls scanList.

I/O Event Scanning I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;
struct scan_list scan_list;
struct io_scan_list *next;

Figure 15-1: Scan List Memory Layout

pevent_list[][]

...

event_scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

scan_element
 node
 . . .
 precord

. . .
160 EPICS IOC Application Developer’s Guide

Chapter 15: Database Scanning
Implementation Overview
}
static struct io_scan_list

 *iosl_head[NUM_CALLBACK_PRIORITIES]
= {NULL,NULL,NULL};

The array iosl_head and the field next are only kept so that scanpiol can be
implemented and will not be discussed further. I/O event scanning uses the general purpose
callback tasks to perform record processing, i.e. no task is spawned for I/O event. The callback
field of io_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

scanIoInit scanIoInit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source.
scanIoInit allocates and initializes an array of io_scan_list structures; one for each
callback priority and puts the address in pioscanpvt. Remember that three callback
priorities are supported (low, medium, and high). Thus for each interrupt source the structures
are illustrated in Figure 15-2:

When scanAdd or scanDelete are called, they call the device support routine
get_ioint_info which returns pioscanpvt. The scan_element is added or deleted
from the correct scan list.

scanIoRequest scanIoRequest (IOSCANPVT pioscanpvt)

This routine is called to request I/O event scanning. It can be called from interrupt level. It
looks at each io_scan_list referenced by pioscanpvt (one for each callback priority)
and if any elements are present in the scan_list a callbackRequest is issued. The
appropriate callback task calls routine ioeventCallback, which just calls scanList.

Periodic Scanning Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskId;

nPeriodic, which is determined at iocInit time, is the number of periodic rates.
papPeriodic is a pointer to an array of pointers to scan_lists. There is an array element
for each scan rate. Thus the structure illustrated in Figure 15-3 exists after iocInit.

A periodic scan task is created for each scan rate. The following routines implement periodic
scanning:

Figure 15-2: Interrupt Source Structure

pioscanpvt

...
io_scan_list
 .callback
 scan_list
 . . .

scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 161

Chapter 15: Database Scanning
Implementation Overview
initPeriodic initPeriodic()

This routine first determines the scan rates. It does this by accessing the SCAN field of the first
record it finds. It issues a call to dbGetField with a DBR_ENUM request. This returns the
menu choices for SCAN. From this the periodic rates are determined. The array of pointers
referenced by papPeriodic is allocated. For each scan rate a scan_list is allocated and a
periodicTask is spawned.

periodicTask periodicTask (struct scan_list *psl)

This task just performs an infinite loop of calling scanList and then calling taskDelay to
wait until the beginning of the next time interval.

Scan Once

scanOnce void scanOnce (void *precord)

A task onceTask waits for requests to issue a dbProcess request. The routine scanOnce
puts the address of the record to be processed in a ring buffer and wakes up onceTask.

This routine can be called from interrupt level.

SetQueueSize scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It
can be changed by executing the following command in the vxWorks startup file.

int scanOnceSetQueueSize(int size);

Figure 15-3: Structure after iocInit

papPeriodic

...
scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
scan_element
 node
 . . .
 precord
162 EPICS IOC Application Developer’s Guide

Chapter 16: Database Structures
 Overview

This chapter describes the internal structures describing an IOC database. It is of interest to
EPICS system developers but serious application developers may also find it useful. This
chapter is intended to make it easier to understand the IOC source listings. It also gives a list of
the header files used by IOC Code.

 Include Files

This section lists the files in base/include that are of most interest to IOC Application
Developers:

alarm.h alarmString.h - These files contain definitions for all alarm status and severity
values.

cadef.h caerr.h caeventmask.h - These files are of interest to anyone writing channel access
clients.

callback.h - The definitions for the General Purpose callback system.

dbAccess.h - Definitions for the runtime database access routines.

dbBase.h - Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchall file for definitions that have no other reasonable place to appear.

dbFldTypes.h - Definitions for DBF_xxx and DBR_xxx types.

dbScan.h - Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h - Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorks lstLib. All routines
start with ell instead of lst. The ellLib routines work on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system

fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose free list facility
EPICS Release: R3.13.0beta12 EPICS IOC Application Developer’s Guide 163

Chapter 16: Database Structures
Structures
gpHash.h - A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used by initHooks.c routines.

link.h - Link definitions

module_types.h - VME hardware configuration. SHOULD NOT BE USED BY NEW
SUPPORT.

recSup.h - The record global routines.

special.h - Definitions for special fields, i.e. SPC_xxx.

task_params.h - Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look at base/src/libCom/tsSubr.c

 Structures
164 EPICS IOC Application Developer’s Guide

Chapter 16: Database Structures
Structures
dbBase
 menuList
 recordTypeList
 drvList
 bptList
 pathPvt
 ppvd
 pgpHash
 ignoreMissingMenus

dbMenu
 node
 name
 nChoice
 papChoiceName
 papChoiceValue

dbRecordType
 node
 attributeList
 recList
 devList
 name
 no_fields
 no_prompt
 link_ind
 papsortFldName
 sortFldInd
 pvalFldDes
 indvalFlddes
 papFldDes
 ...

drvSup
 node
 name
 pdrvet

brkTable
 node
 name
 number
 papBrkInt

brkInt
 raw
 slope
 eng

dbFldDes
 prompt
 name
 extra
 pdbRecordType
 indRecordType
 special
 field_type
 process_passive
 base
 promptgroup
 interest
 as_level
 initial
 ...

devSup
 node
 name
 pdset
 link_type

dbRecordNode
 node
 precord
 recordname
 visible
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 165

Chapter 16: Database Structures
Structures
166 EPICS IOC Application Developer’s Guide

 INDEX
 INDEX

A

AB_IO. 36
Access Security. 53
addpath . 26
alarm - example. 95
Alloc/Free DBENTRY 115
asAddClient. 62
asAddMember. 61
asChangeClient . 63
asChangeGroup. 62
ascheck . 56
asCheckGet(. 63
asCheckPut . 63
asCompute. 64
asComputeAllAsg . 63
asComputeAsg . 64
asdbdump . 66, 76
asDbGetAsl . 66
asDbGetMemberPvt . 66
asDump(. 64
asDumpHag. 64
asDumpHash . 65
asDumpMem. 64
asDumpRules . 64
asDumpUag. 64
ASG. 55

. 54
asGetClientPvt . 63
asGetMemberPvt. 62
asInit . 56, 65, 76
asInitAsyn . 66
asInitFile . 61
asInitFP . 61
asInitialize . 61
ASL. 54
asl - field definition rules. 29
asl_level - field definition 30
asphag . 67, 76
aspmem . 67, 76
asprules . 67, 76
aspuag . 67, 76
asPutClientPvt. 63
asPutMemberPvt . 62

asPvt in DBADDR . 129
asRegisterClientCallback 63
asRemoveClient . 63
asRemoveMember . 62
asSetFilename . 56, 65, 76
asSetSubstitutions . 56, 65
asSubInit . 57, 66
asSubProcess. 57, 66
astac. 66
asynchronous device support example 105

B

base - field definition. 31
base - field definition rules 29
BBGPIB_IO . 36
BITBUS_IO . 36
breakpoint table - database definition 34
Breakpoint Tables . 38
Breakpoints . 73
breaktable . 26

C

ca_channel_status . 77
Cached Puts. 21
CALC . 56
CALLBACK . 150
callbackGetUser 150–151
callbackInit . 150
callbackRequest . 150
callbackRequestProcessCallback 150
callbackSetCallback . 150
callbackSetPriority . 150
callbackSetQueueSize. 49, 152
callbackSetUser. 150
CAMAC_IO . 36
casr . 77
Channel Access. 5
channel access link . 13
Channel Access Monitors 139
choice . 26
choice_string - device definition 34
comment - Database Definitions. 28
CONSTANT . 35
constant link . 13
coreRelease . 78
cvt_dbaddr - Record Support Routine 98

D

database access routines - List of 130
Database Definition File 25
167 EPICS IOC Application Developer’s Guide

 INDEX
database definitions. 25
Database Format - Summary 25
database link . 13
Database Link Guidelines 16
Database Links . 13
Database Locking . 15
Database Scanning . 15
DB_MAX_CHOICES. 127
db_post_events . 139
dba. 72
dbAccess.h . 127
dbAdd . 129
dbAddPath. 116
DBADDR . 129
dbAllocBase . 114
dbAllocEntry. 115
dbAllocForm . 122
dbap. 74
dbAsciiToMenuH . 40
dbAsciiToRecordtypeH. 40
dbb. 73
dbBufferSize . 137
dbc. 73
dbCaAddLink . 142
dbCaGetLink. 142
dbCaGetSevr . 142
dbCaLinkInit . 48, 142
dbCaPutLink . 142
dbcar . 77, 79
dbCaRemoveLink . 142
dbCopyEntry . 116
dbCopyEntryContents. 116
dbCopyRecord . 119
dbCreateRecord. 119
dbCvtLinkToConstant. 122
dbCvtLinkToPvlink. 122
dbd. 73
dbDefs.h . 127
dbDeleteRecord. 119
dbDumpBreaktable . 124
dbDumpDevice . 81, 123
dbDumpDriver . 81, 124
dbDumpFldDes . 81, 123
dbDumpMenu 80–81, 123
dbDumpPath . 123
dbDumpRecord . 123
dbDumpRecords . 81, 125
dbDumpRecordType 81, 123
DBE_ALARM . 97
DBE_LOG . 97
DBE_VAL. 97
dbel . 77
dbExpand . 42, 124
DBF_CHAR . 128
DBF_DEVICE . 128
DBF_DOUBLE. 128
DBF_ENUM. 128
DBF_FLOAT . 128
DBF_FWDLINK 37, 128
DBF_INLINK

. 128
DBF_LONG . 128
DBF_MENU. 128
DBF_NOACCESS . 128

DBF_OUTLINK. 128
DBF_SHORT . 128
DBF_UCHAR. 128
DBF_ULONG. 128
DBF_USHORT. 128
DBF_xxx Definitions of Field types 128
dbFindBrkTable . 123
dbFindField . 120
dbFindMenu . 121
dbFindRecord . 119
dbFindRecordType . 117
dbFinishEntry . 115
dbFirstField . 118
dbFirstRecord . 119
dbFirstRecordType . 117
dbFldTypes.h. 127
dbFoundField . 118, 120
dbFreeBase . 115
dbFreeEntry. 115
dbFreeForm. 122
dbGet. 133
dbGetDefaultName . 118
dbGetField. 133
dbGetFieldIndex . 137
dbGetFieldName. 118
dbGetFieldType. 118
dbGetFormPrompt . 122
dbGetFormValue . 122
dbGetLink . 133
dbGetLinkDBFtype. 138
dbGetLinkField . 122
dbGetLinkType . 122
dbGetMenuChoices. 120
dbGetMenuIndex . 121
dbGetMenuIndexFromString 121
dbGetMenuStringFromIndex 121
dbGetNelements . 138
dbGetNFields . 118
dbGetNLinks. 122
dbGetNMenuChoices 120
dbGetNRecords. 119
dbGetNRecordTypes. 117
dbGetPdbAddrFromLink 138
dbGetPrompt . 118
dbGetPromptGroup. 118
dbGetRange. 120
dbGetRecordAttribute. 119
dbGetRecordName . 119
dbGetRecordTypeName 117
dbGetRset . 137
dbGetString . 120
dbgf . 72
dbgrep . 71
dbhcr . 75, 80
dbInitEntry . 115
dbInvisibleRecord . 120
dbior . 74
dbIsDefaultValue. 120
dbIsLinkConnected . 138
dbIsValueField . 137
dbIsVisibleRecord. 120
dbl . 71
dbLoadDatabase . 43
dbLoadRecords . 43
168 EPICS IOC Application Developer’s Guide

 INDEX
dbLoadTemplate . 44
dbLockGetLockId . 141
dbLockInitRecords . 141
dbLockSetGblLock . 141
dbLockSetGblUnlock 141
dbLockSetMerge. 141
dbLockSetRecordLock 141
dbLockSetSplitSl . 141
dblsr. 79
dbNameToAddr. 132
dbNextField. 118
dbNextRecord . 119
dbNextRecordType . 117
dbNotifyAdd . 137
dbNotifyCancel . 136
dbNotifyCompletion . 137
dbnr . 73
dbp. 73
dbPath . 116
dbpf . 72
dbpr . 72
dbProcess . 139
dbPut . 135
dbPutAttribute. 38, 138
dbPutField . 134
dbPutForm. 122
dbPutLink . 134
dbPutMenuIndex. 121
dbPutNotify. 135–136
dbPutRecordAttribute 118
dbPutString . 120
dbPvdDump . 82, 124
dbPvdTableSize. 49
DBR_AL_DOUBLE. 131
DBR_AL_LONG . 131
DBR_CHAR . 131
DBR_CTRL_DOUBLE 131
DBR_CTRL_LONG. 131
DBR_DOUBLE . 131
DBR_ENUM. 131
DBR_ENUM_STRS. 131
dbr_field_type in DBADDR 129
DBR_FLOAT . 131
DBR_GR_DOUBLE. 131
DBR_GR_LONG . 131
DBR_LONG . 131
DBR_PRECISION . 131
DBR_PUT_ACKS 131–132
DBR_PUT_ACKT 131–132
DBR_SHORT . 131
DBR_STATUS . 131
DBR_TIME. 131
DBR_UCHAR . 131
DBR_ULONG . 131
DBR_UNITS. 131
DBR_USHORT. 131
DBR_xxx Database Request Types and Options .

130
dbReadDatabase . 116
dbReadDatabaseFP . 116
dbReadTest . 45
dbRenameRecord . 120
dbReportDeviceConfig 124
dbs . 73

dbScan.h . 156
dbScanFwdLink . 139
dbScanLink . 138
dbScanLock. 140
dbScanPassive . 138
dbScanUnlock . 140
dbstat . 74
dbt . 78
dbtgf . 78
dbToMenuH . 39
dbToRecordtypeH . 39
dbtpf . 79
dbtpn . 79
dbtr . 72
dbTranslateEscape . 27
dbValueSize. 137
dbVerify. 120
dbVerifyForm . 122
dbVisibleRecord . 120
dbWriteBreaktable . 116
dbWriteBreaktableFP 116
dbWriteDevice . 116
dbWriteDeviceFP . 116
dbWriteDriver . 116
dbWriteDriverFP. 116
dbWriteMenu . 116
dbWriteMenuFP . 116
dbWriteRecord . 117
dbWriteRecordFP . 117
dbWriteRecordType . 116
dbWriteRecordTypeFP 116
DCT_FWDLINK . 114
DCT_INLINK. 114
DCT_INTEGER . 114
DCT_LINK_CONSTANT 121
DCT_LINK_DEVICE 121
DCT_LINK_FORM . 121
DCT_LINK_PV . 121
DCT_MENU. 114
DCT_MENUFORM . 114
DCT_NOACCESS . 114
DCT_OUTLINK. 114
DCT_REAL . 114
DCT_STRING . 114
devConnectInterrupt . 146
devCreateMask . 147
devDisableInterruptLevel 146
devDisconnectInterrupt. 146
devEnableInterruptLevel. 146
device . 26
device - database definition. 33
Device Support Entry Table 91
devNmlToDig . 147
devNormalizedGblGetField 146
devRegisterAddress . 145
devUnregisterAddress 146
driver . 26
driver - database definition 34
Driver Support Entry Table Example 110
drvet_name - driver definition. 34
DSET. 91
dset - dbCommon . 103
dset_name - device definition 34
dtyp - dbCommon . 103
169 EPICS IOC Application Developer’s Guide

 INDEX
E

eltc. 74, 86
Environment Variables 51
EPICS . 1, 5

Basic Attributes. 6
Hardware/Software Platforms. 6
Overview. 1

EPICS_CA_ADDR_LIST 51
EPICS_CA_AUTO_ADDR_LIST 51
EPICS_CA_BEACON_PERIOD 51
EPICS_CA_CONN_TMO 51
EPICS_CA_REPEATER_PORT 51
EPICS_CA_SERVER_PORT 51
EPICS_IOC_LOG_FILE_COMMAND. 87
EPICS_IOC_LOG_FILE_LIMIT. 87
EPICS_IOC_LOG_FILE_NAME 87
EPICS_IOC_LOG_INET 51
EPICS_IOC_LOG_PORT. 51, 88
EPICS_TS_MIN_WEST 51
EPICS_TS_NTP_INET 51
epicsAddressType . 145
epicsAddressTypeName 145
epicsInterruptType . 146
epicsPrintf . 85, 101
epicsPrtEnvParams . 78
epicsRelease . 78
EPICStovxWorksAddrType 145
epicsVprintf. 85
errlog Task . 85
errlogAddListener . 86
errlogFatal . 84
errlogGetSevEnumString 84
errlogGetSevToLog. 84
errlogInfo . 84
errlogInit . 49, 86
errlogListener . 86
errlogMajor . 84
errlogMessage . 84
errlogMinor . 84
errlogPrintf . 84
errlogRemoveListener. 86
errlogSetSevToLog . 84
errlogSevEnum . 84
errlogSevPrintf . 84
errlogSevVprintf . 84
errlogVprintf . 84
errMessage . 84
errPrintf . 84–85
Escape Sequence. 27
Event . 155
Event - Scan Type . 155
Event Scanning . 160
EVNT - Scan Related Field 156
extra - field definition rules 29
extra_info - field definition 31

F

field . 26
field_name - field definition 29

field_name - record instance definition. 35
field_size in DBADDR 129
field_type in DBADDR. 129
filed_type - field definition 30
filename extension conventions 27
FLDNAME_SZ. 127
FWDLINK . 13

G

get_alarm_double Record Support Routine . . 100
get_array_info - Record Support Routine. 98
get_control_double - Record Support Routine 100
get_enum_str - record Support Routine 99
get_enum_strs - record Support Routine 99
get_graphic_double - example 94
get_graphic_double - Record Support Routine. 99
get_ioint_info . 159
get_ioint_info - device support routine. 108
get_precision - Record Support Routine. 99
get_units - .example . 94
get_units - Record Support Routine 98
gft . 80
GPIB_IO . 36
grecord . 26
gui_group - field definition 30
Guidelines for Asynchronous Records 20
Guidelines for Synchronous Records 19

H

HAG . 54–56

I

I/O Event - Scan Type. 155
I/O Event scanned . 155
I/O Event Scanning 157, 160
include. 26
include - Database Definitions 28
Include File Generation. 39
init - device support routine 107
init - Record Support Routine 97
init_record - device support routine 108
init_record - example . 92
init_record - Record Support Routine. 97
init_value - field definition 30
InitDatabase . 48
InitDevSup . 48
InitDrvSup. 48
initHookFunction . 50
initHookRegister . 50
initHooks. 50
initHookState . 50
initial - field definition rules 29
Initialize Logging . 51
initPeriodic . 162
InitRecSup. 48
170 EPICS IOC Application Developer’s Guide

 INDEX
INLINK. 13
INP . 55
Input/Output Controller 1

Hardware/Software Platforms. 6
Software Components. 7

INST_IO . 36
interest - field definition rules 29
interest_level - field definition 31
interruptAccept . 48
IOC . 5

See Input/Out Controller
IOC Error Logging . 83
iocInit . 48
iocLogClient . 87
iocLogDisable . 87
iocLogServer. 87

K

Keywords . 26

L

LAN . 5
link.h . 127
LINK_ALARM. 14
link_type - device definition 34
Local Area Network

Hardware/Software Platforms. 6
logMsg . 87

M

Macro Substitution . 27
MAX_STRING_SIZE 127
Maximize Severity . 14
menu . 26
menu - Database Definition 28
menu - field definition rules 29
menuScan.ascii . 156
monitor - example . 96
MS. 14
Multiple Definitions . 27

N

name - breakpoint table. 34
NMS . 14
no_elements in DBADDR 129
NPP . 14

O

Operator Interface
Hardware/Software Platforms. 6

OPI . 5
OUTLINK. 13
Overview of Record Processing 89

P

Passive. 155
Passive - Scan Type. 155
path . 26
path - Database Definitions. 27
Periodic - Scan Type . 155
Periodic Scanning . 161
periodicTask . 162
pfield in DBADDR . 129
pfldDes in DBADDR 129
pft . 80
PHAS - Scan Related Field. 156
post_event . 157, 160
PP . 14
pp - field definition rules 29
pp_value - field definition 31
precord - DBADDR . 129
PRIO - Scan Related Field 156
process - example . 93
process - Record Support Routine 98
process - record support routine 16
Process Passive . 14
prompt - field definition rules 29
prompt_value - field definition 30
. 29
Psuedo Field . 37
put_array_info - Record Support Routine. 98
put_enum_str - Record Support Routine 99
putenv . 51
PUTNOTIFY . 136
PV_LINK . 35
PVNAME_SZ . 127

Q

Quoted String . 27

R

recGblDbaddrError . 101
recGblFwdLink . 102
recGblGetAlarmDouble 101
recGblGetControlDouble 101
recGblGetGraphicDouble 101
recGblGetPrec. 102
recGblGetTimeStamp 102
recGblInitConstantLink 102
recGblRecordError . 101
recGblRecsupError . 101
recGblResetAlarms . 101
recGblSetSevr . 100
record . 26
record attribute . 37
171 EPICS IOC Application Developer’s Guide

record instance - database definition. 35
Record Instance File . 25
Record Processing. 16
Record Support Entry Table 90
record type - Database Definition 29
record_name - record instance definition 35
record_type - device definition 34
record_type - record instance definition 35
record_type - record type definition 29
recordtype . 26
report - device support routine 107
report - Record Support Routine. 97
Resource Definitions. 52
RF_IO . 36
RSET. 90
RSET - example . 91
RULE . 55
rules

field definition . 29

S

S_db_Blocked . 136
S_db_Pending . 136
SCAN - Scan Related Field 155
Scan Once - Scan Type 155
Scan Related Database Fields 155
SCAN_1ST_PERIODIC. 157
scanAdd. 157
scanDelete . 157
scanInit . 157
scanIoInit. 161
scanIoRequest . 161
scanOnce . 162
scanOnceSetQueueSize. 49, 162
scanpel. 75
scanpiol . 75
scanppl . 75
size - field definition rules. 29
size_value - field definition 31
SPC_ALARMACK. 31
SPC_AS . 31
SPC_CALC. 31
SPC_DBADDR. 31
SPC_LINCONV . 31
SPC_MOD . 31
SPC_NOMOD . 31
SPC_RESET . 31
SPC_SCAN. 31
special - field definition rules 29
special - Record Support Routine 98
special in DBADDR . 129
special_value - field definition 31
status codes . 86
struct dbAddr . 129
struct putNotify . 136
synchronous device support example 104
172 EPICS IOC Application Developer’s Guide

 INDEX
T

taskwd.h . 152
taskwdAnyInsert . 152
taskwdAnyRemove . 153
taskwdInsert . 152
taskwdRemove . 152
timexN. 78
tpn . 80
Ts_init . 48
TSConfigure . 49
TSconfigure. 49
TSreport . 75

U

UAG . 54–55
Unquoted String . 27

V

value - record instance definition 35
veclist . 78
VME_AM_EXT_SUP_DATA 145
VME_AM_STD_SUP_DATA 145
VME_AM_SUP_SHORT_IO. 145
VME_IO . 36
VXI_IO . 37
vxWorks startup command file 47
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 173

174 EPICS IOC Application Developer’s Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Preface
	Overview
	Acknowledgments

	Chapter 1: EPICS Overview
	What is EPICS?
	Basic Attributes
	Hardware - Software Platforms (Vendor Supplied)
	OPI
	LAN
	IOC
	IOC Software Components

	IOC Database
	Database Access
	Database Scanning
	Record Support, Device Support and Device Drivers
	Channel Access
	Database Monitors
	Channel Access

	Client Services
	Search Server
	Connection Request Server
	Connection Management
	OPI Tools

	Channel Access Tools
	Other OPI Tools
	EPICS Core Software
	Getting Started

	Chapter 2: Database Locking, Scanning, And Processing
	Overview
	Record Links
	Database Links
	Process Passive
	Maximize Severity
	Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	Database Scanning
	5. Periodic - Records are scanned at regular intervals.
	6. I/O event - A record is scanned as the result of an I/O interrupt.
	7. Event - A record is scanned as the result of any task issuing a post_event request.
	8. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	Record Processing
	Guidelines for Creating Database Links
	9. A begins processing. While processing a request is made to process B.
	10. B starts processing. While processing a request is made to process C.
	11. C starts processing. One of the first steps is to get a value from A via the input link.
	12. At this point a question occurs. Note that the input link specifies process passive (signifie...
	13. C obtains the value from A and completes its processing. Control returns to B.
	14. B completes returning control to A
	15. A completes processing.

	Rules Relating to Database Links
	Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	Lock Sets
	PACT - processing active
	Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	Process Passive: Field attribute
	Maximize Severity: Link option
	Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	Guidelines for Asynchronous Records
	9. pact is set TRUE
	10. Data is obtained for all input links
	11. Record processing is started
	12. The record processing routine returns
	13. Record processing continues
	14. Record specific alarm conditions are checked
	15. Monitors are raised
	16. Forward links are processed
	17. pact is set FALSE.
	18. Asynchronous record processing does not delay the scanners.
	19. Between the time record processing begins and the asynchronous completion routine completes, ...
	20. Forward and output links are triggered only when the asynchronous completion routine complete...

	Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	Obtain Old Data
	Delays
	Task Abort
	Cached Puts
	Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.

	INLINK
	OUTLINK
	FWDLINK
	Chapter 3: Database Definition

	Overview
	Definitions
	Summary
	General Rules
	Keywords
	Unquoted Strings
	Quoted Strings
	Macro Substitution
	Escape Sequences
	dbTranslateEscape
	Define before referencing
	Multiple Definitions
	filename extension
	path addpath
	include
	comment
	menu
	Record Type
	rules
	definitions
	Example
	device
	definitions
	Examples
	driver
	Definitions
	Examples
	breakpoint table
	Definitions
	Example
	record instance
	definitions
	Examples
	record attribute

	Breakpoint Tables
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	Menu and Record Type Include File Generation.
	Introduction
	dbToMenuH
	Example

	dbToRecordtypeH
	Example
	Discussion of Generated File

	Utility Programs
	dbExpand
	dbLoadDatabase
	EXAMPLE
	dbLoadRecords
	dbLoadTemplate
	EXAMPLE
	dbReadTest

	Chapter 4: IOC Initialization
	Overview
	iocInit
	coreRelease
	getResources
	iocLogInit
	taskwdInit
	callbackInit
	dbCaLinkInit
	initDrvSup
	initRecSup
	initDevSup
	ts_init
	initDatabase
	finishDevSup
	scanInit
	interruptAccept
	initialProcess
	rsrv_init
	Changing iocCore fixed limits

	callbackSet QueueSize
	dbPvdTableSize
	scanOnceSet QueueSize
	errlogInit
	TSconfigure
	initHooks
	Environment Variables
	Initialize Logging
	Get Resource Definitions

	Chapter 5: Access Security
	Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	Quick Start
	User’s Guide
	Features
	Limitations
	Definitions
	Access Security Configuration File
	Simple Example
	Syntax Definition
	Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	ascheck - Check Syntax of Access Configuration File
	IOC Access Security Initialization
	Database Configuration
	Access Security Group
	Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	1. When the value is found to be 1, asInit is called and the value set back to 0.
	2. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	Record Type Description
	Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.
	Design Summary

	Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	Additional Requirements
	Performance
	Generic Implementation
	No Access Security within an IOC
	Defaults
	Access Security is Optional
	Design Overview
	Configuration File
	Access Security Library
	IOC Database Access Security
	Channel Access Security
	Comments
	Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.
	Access Security Application Programmer’s Interface

	Definitions
	Initialization
	Group manipulation
	add Member
	remove Member
	get Member Pvt
	put Member Pvt
	change Group
	Client Manipulation
	add Client
	change Client
	remove Client
	get Client Pvt
	put Client Pvt
	register Callback
	check Get
	check Put
	Access Computation
	compute all Asg
	compute Asg
	compute access rights
	Diagnostic
	dump
	dump UAG
	dump HAG
	dump Rules
	dump member
	dump hash table
	Database Access Security

	Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	Access Security Group definition
	Access Client Definition
	Database Access Library
	Initialization
	Routines used by Channel Access Server
	Routine to test asAddClient
	Subroutines attached to a subroutine record
	Diagnostic Routines
	Channel Access Security

	CA Server Interfaces to the Access Security System
	Client Interfaces
	Access Control: Implementation Overview

	Implementation Overview
	Locking
	Structures

	Chapter 6: IOC Test Facilities
	Overview
	This chapter describes a number of IOC test routines that are of interest to both application dev...
	The user should also be aware of the field TPRO, which is present in every database record. If it...

	Database List, Get, Put
	dbl
	Database List:
	Examples
	This command prints the names of records in the run time database. If <record type> is not specif...
	If <filename> is specified the output is written to the specified file (if the file already exist...

	dbgrep
	List Record Names That Match a Pattern:
	Examples
	Lists all record names that match a pattern. The pattern can contain any characters that are lega...

	dba
	Database Address:
	Example
	This command calls dbNameToAddr and then prints the value of each field in the dbAddr structure d...

	dbgf
	Get Field:
	Example:
	This performs a dbNameToAddr and then a dbGetField. It prints the field type and value. If the fi...

	dbpf
	Put Field:
	Example:
	This command performs a dbNameToAddr followed by a dbPutField and dbgf. If <field_name> is not sp...

	dbpr
	Print Record:
	Example
	This command prints all fields of the specified record up to and including those with the indicat...

	dbtr
	Test Record:
	This calls dbNameToAddr, then dbProcess and finally dbpr (interest level 3). Its purpose is to te...

	dbnr
	Print number of records:
	This command displays the number of records of each type and the total number of records. If all_...
	Breakpoints
	A breakpoint facility that allows the user to step through database processing on a per lockset b...
	The breakpoint facility records all attempts to process records in a lockset containing breakpoin...

	dbb
	Set Breakpoint:
	Sets a breakpoint in a record. Automatically spawns the bkptCont, or breakpoint continuation task...

	dbd
	Remove Breakpoint:
	Removes a breakpoint from a record.

	dbs
	Single Step:
	Steps through execution of records within a lockset. If this command is called without an argumen...

	dbc
	Continue:
	Continues execution until another breakpoint is found. This command may also be called without an...

	dbp
	Print Fields Of Suspended Record:
	Prints out the fields of the last record whose execution was suspended.

	dbap
	Auto Print:
	Toggles the automatic record printing feature. If this feature is enabled for a given record, it ...

	dbstat
	Status:
	Prints out the status of all locksets that are suspended or contain breakpoints. This lists all t...
	The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so.”...
	Error Logging

	eltc
	Display error log messages on console:
	This determines if error messages are displayed on vxWorks console. A value of 0 means no and any...
	Hardware Reports

	dbior
	I/O Report:
	This command calls the report entry of the indicated driver. If <driver_name> is not specified th...

	dbhcr
	Hardware Configuration Report:
	This command produces a report of all hardware links. To use it on the IOC, issue the command:
	The report will probably not be in the sort order desired. The Unix command:
	should produce the sort order you desire.
	Scan Reports

	scanppl
	Print Periodic Lists:
	This routine prints a list of all records in the periodic scan list of the specidied rate. If rat...

	scanpel
	Print Event Lists:
	This routine prints a list of all records in the event scan list for the specified event nunber. ...

	scanpiol
	Print I/O Event Lists:
	This routine prints a list of all records in the I/O event scan lists.
	Time Server Report

	TSreport
	Format:
	This routine prints out information about the Time server. This includes:
	Access Security Commands

	asSetFilename
	Format:
	This command defines a new access security file.

	asInit
	Format:
	This command reinitializes the access security system. It rereads the access security file in ord...

	asdbdump
	Format:
	This provides a complete dump of the access security database.

	aspuag
	Format:
	Print the members of the user access group. If no user access group is specified then the members...

	asphag
	Format:
	Print the members of the host access group. If no host access group is specified then the members...

	asprules
	Format:
	Print the rules for the specified access security group or if no group is specified for all groups.

	aspmem
	Format:
	Print the members (records) that belong to the specified access security group, for all groups if...
	Channel Access Reports

	ca_channel_status
	Format:
	Prints status for each channel in use by specialized vxWorks task.

	casr
	Channel Access Server Report
	Level can have one of the following values:

	dbel
	Format:
	This routine prints the Channel Access event list for the specified record.

	dbcar
	Database to Channel Access Report - See “Record Link Reports”
	Interrupt Vectors

	veclist
	Format:
	Print Interrupt Vector List
	EPICS

	epicsPrtEnvParams
	Format:
	Print Environment Variables

	epicsRelease
	Format:
	Print release of iocCore.
	Database System Test Routines
	These routines are normally only of interest to EPICS system developers NOT to Application Develo...

	dbt
	Measure Time To Process A Record:
	Times the execution of 100 successive processings of record record_name. Note that process passiv...

	dbtgf
	Test Get Field:
	Example:
	This performs a dbNameToAddr and then calls dbGetField with all possible request types and option...

	dbtpf
	Test Put Field:
	Example:
	This command performs a dbNameToAddr, then calls dbPutField, followed by dbgf for each possible r...

	dbtpn
	Test Put Notify:
	Example:
	This command performs a dbNameToAddr, then calls dbPutNotify and has a callback routine that prin...
	Record Link Routines

	dblsr
	Lock Set Report:
	This command generates a report showing the lock set to which each record belongs. If recordname ...
	level can have the following values:

	dbcar
	Database to channel access report
	This command generates a report showing database channel access links. If recordname is 0 then in...
	level can have the following values:

	dbhcr
	Report hardware links. See “Hardware Reports”.
	Old Database Access Testing
	These routines are of interest to EPICS system developers. They are used to test the old database...

	gft
	Get Field Test:
	Example:
	This performs a db_name_to_addr and then calls db_get_field with all possible request types. It p...

	pft
	Put Field Test:
	Example:
	This command performs a db_name_to_addr, db_put_field, db_get_field and prints the result for eac...

	tpn
	Test Put Notify:
	Example:
	This routine tests dbPutNotify via the old database access interface.
	Routines to dump database information

	dbDumpPath
	Dump Path:
	The current path for database includes is displayed.

	dbDumpMenu
	Dump Menu:
	If the second argument is 0 then all menus are displayed.

	dbDumpRecordType
	Dump Record Description:
	If the second argument is 0 then all descriptions of all records are displayed.

	dbDumpFldDes
	Dump Field Description:
	If the second argument is 0 then the field descriptions of all records are displayed. If the thir...

	dbDumpDevice
	Dump Device Support:
	If the second argument is 0 then the device support for all record types is displayed.

	dbDumpDriver
	Dump Driver Support:

	dbDumpRecords
	Dump Record Instances:
	If the second argument is 0 then the record instances for all record types is displayed. The thir...

	dbDumpBreaktable
	Dump breakpoint table
	This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

	dbPvdDump
	Dump the Process variable Directory:
	This command shows how many records are mapped to each hash table entry of the process variable d...

	Chapter 7: IOC Error Logging
	Overview
	Error Message Routines
	Basic Routines
	Log with Severity
	Status Routines
	Obsolete Routines
	errlog Task

	Add and Remove Log Listener
	target console routines
	Status Codes
	iocLog

	iocLogServer
	iocLogClient
	Initialize Logging
	Configuring a Private Log Server

	Chapter 8: Record Support
	Overview
	Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	Record Support and Device Support Entry Tables
	Example Record Support Module
	Declarations
	init_record
	process
	Miscellaneous Utility Routines
	Alarm Processing
	Raising Monitors
	Record Support Routines

	Generate Report of Each Field in Record
	Initialize Record Processing
	Initialize Specific Record
	Process Record
	Special Processing
	Get Value
	Convert dbAddr Definitions
	Get Array Information
	Put Array Information
	Get Units
	Get Precision
	Get Enumerated String
	Get Strings for Enumerated Field
	Put Enumerated String
	Get Graphic Double Information
	Get Control Double Information
	Get Alarm Double Information
	Global Record Support Routines

	Alarm Status and Severity
	Alarm Acknowledgment
	Generate Error: Process Variable Name, Caller, Message
	Generate Error: Status String, Record Name, Caller
	Generate Error: Record Name, Caller, Record Support Message
	Get Graphics Double
	Get Control Double
	Get Alarm Double
	Get Precision
	Get Time Stamp
	Forward link
	Initialize Constant Link

	Chapter 9: Device Support
	Overview
	Example Synchronous Device Support Module
	Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	Device Support Routines
	Generate Device Report
	Initialize Record Processing
	Initialize Specific Record
	Get I/O Interrupt Information
	Other Device Support Routines

	Chapter 10: Driver Support
	Overview
	Device Drivers
	init
	report
	Hardware Configuration

	Chapter 11: Static Database Access
	Overview
	Definitions
	DBBASE
	DBENTRY
	Field Types
	Allocating and Freeing DBBASE

	dbAllocBase
	dbFreeBase
	DBENTRY Routines

	Alloc/Free DBENTRY
	dbInitEntry dbFinishEntry
	dbCopyEntry dbCopyEntry Contents
	Read and Write Database

	Read Database File
	Write Database Definitons
	Write Record Instances
	Manipulating Record Types

	Get Number of Record Types
	Locate Record Type
	Get Record Type Name
	Manipulating Field Descriptions

	Get Number of Fields
	Locate Field
	Get Field Type
	Get Field Name
	Get Default Value
	Get Field Prompt
	Manipulating Record Attributes

	dbPutRecord Attribute
	dbGetRecord Attribute
	Manipulating Record Instances

	Get Number of Records
	Locate Record
	Get Record Name
	Create/Delete/Free Record
	Copy Record
	Rename Record
	Record Visibility
	Find Field
	Get/Put Field Values
	Manipulating Menu Fields

	Get Number of Menu Choices
	Get Menu Choice
	Get/Put Menu
	Locate Menu
	Manipulating Link Fields

	Link Types
	All Link Fields
	Constant and Process Variable Links
	Manipulating MenuForm Fields

	Alloc/Free Form
	Get/Put Form
	Verify Form
	Get Related Field
	Example
	Find Breakpoint Table
	Dump Routines
	Examples

	Expand Include
	dbDumpRecords

	Chapter 12: Runtime Database Access
	Overview
	Database Include Files
	dbDefs.h
	dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	dbAccess.h
	link.h
	Runtime Database Access Overview

	Database Request Types and Options
	Options Example
	ACKT and ACKS
	Database Access Routines

	dbNameToAddr
	Get Routines
	dbGetField
	dbGetLink dbGetLinkValue
	dbGet
	Put Routines
	dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.

	5. The record is unlocked.

	dbPutLink dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	dbPut
	Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...

	dbPutNotify
	dbNotifyCancel
	dbNotifyAdd
	dbNotifyCompletion
	Utility Routines
	dbBufferSize
	dbValueSize
	dbGetRest
	dbIsValueField
	dbGetFieldIndex
	dbGetNelements
	dbIsLinkConnected
	dbGetPdbAddrFromL ink
	dbGetLinkDBFtype
	Attribute Routine
	dbPutAttribute
	Process Routines
	dbScanPassive dbScanLink dbScanFwdLink
	dbProcess
	Runtime Link Modification
	Channel Access Monitors
	Lock Set Routines

	dbScanLock
	dbScanUnlock
	dbLockGetLockId
	dbLockInitRecords
	dbLockSetMerge
	dbLockSetSplitSl
	dbLockSetGblLock
	dbLockSetGblUnlock
	dbLockSetRecordLock
	Channel Access Database Links

	Basic Routines
	dbCaLinkInit
	dbCaAddLink
	dbCaRemoveLink
	dbCaGetLink
	dbCaPutLink
	dbGetNelements
	dbCaGetSevr
	dbCaIsLinkConnected

	Chapter 13: Device Support Library
	Overview
	Registering VME Addresses
	Definitions of Address Types
	Register Address
	Unregister Address
	Interrupt Connect Routines

	Definitions of Interrupt Types
	Connect
	Disconnect
	Enable Level
	Disable Level
	Macros and Routines for Normalized Analog Values

	Normalized GetField
	Convert Digital Value to a Normalized Double Value
	Convert Normalized Double Value to a Digital Value

	Chapter 14: EPICS General Purpose Tasks
	Overview
	General Purpose Callback Tasks
	Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	Syntax
	Example
	Callback Queue
	Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 15: Database Scanning
	Overview
	Scan Related Database Fields
	SCAN
	PHAS
	EVNT - Event Number
	PRIO - Scheduling Priority
	Software Components That Interact With The Scanning System

	menuScan.ascii
	dbScan.h
	Initializing Database Scanners
	Adding And Deleting Records From Scan List
	Declaring Database Event
	Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	Implementation Overview

	Definitions And Routines Common To All Scan Types
	Event Scanning
	Figure 15-1: Scan List Memory Layout

	post_event
	I/O Event Scanning
	scanIoInit
	Figure 15-2: Interrupt Source Structure

	scanIoRequest
	Periodic Scanning
	Figure 15-3: Structure after iocInit

	initPeriodic
	periodicTask
	Scan Once
	scanOnce
	SetQueueSize

	Chapter 16: Database Structures
	Overview
	Include Files
	Structures

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

